Issues

 / 

2021

 / 

vol. 19 / 

Issue 3

 



Download the full version of the article (in PDF format)

T. L. Malysheva, O. L. Tolstov
«Oligomer–Polymer Nanocomposites Based on Oligo(Urethane-Urea)s and Poly(Vinyl Chloride) »
0707–0720 (2021)

PACS numbers: 61.25.hk, 61.41.+e, 68.35.Np, 68.37.Hk, 68.55.am, 78.30.Jw, 78.67.Sc

In this article, we are studied an effect of molecular weight of amine-terminated oligo(urethane-urea)s (OUU) on the morphology and mechanical properties of the oligomer–polymer blends with poly(vinyl chloride) (PVC) stabilized by hydrogen bonding. OUU are fabricated from poly(tetramethylene glycol) (PTMG) with a molecular weight of 1000, 2,4-tolylene diisocyanate (TDI) and excess of 4,4?-methylenedianiline (MDA) as a chain extender via conventional two-step ‘prepolymer’ approach in N,N-dimethylformamide (DMF) solution. For comparative purpose, the linear poly(urethane-urea) (PUU) is synthesized from PTMG, TDI and MDA using the same synthesize pathway at a molar ratio of isocyanate-terminated prepolymer to diamine of 1:1. The polymer-composite films with 3% (by weight) LiCl or 10–90% (by weight) PVC are prepared using solution casting technique from DMF. A presence of intra- and intermolecular hydrogen bonding (HB) in neat OUU and the composites is studied by FTIR. It is find out a formation of stronger H-bonding network in OUU/LiCl and oligomer–polymer blends in comparison with PUU/LiCl and polymer–polymer blends due to participation of the NH\(_2\) and NH groups of OUU rigid segments in interfacial interactions with polar groups of PVC. Studying the morphology by SEM demonstrates that a maximum size of the particles of dispersed PVC phase in polymer–polymer blends with 30% of PVC is as high as 150 \(\mu\)m, whereas the strong interfacial interactions in oligomer–polymer blends provide an efficient dispersing of the components and reducing their particle size to nanoscale level. Compatibility of the components reduces at increasing molecular weight of OUU and decreasing NH\(_2\)-groups’ content, and PVC content increases above 50%. Experimental tensile strength of oligomer–polymer nanocomposites obtained overcomes a theoretical one by 50–60%.

Keywords: oligomer–polymer blends, oligo(urethane-urea), poly(vinyl chloride), interfacial interactions, morphology, nanocomposite

https://doi.org/10.15407/nnn.19.03.707

References

1.B. G. Zadontsev, S. A. Yaroshevskiy, and S. M. Mezhikovskiy, Plasticheskie Massy, 5: 9 (1984) (in Russian).
2.L. N. Muratova, M. S. Akutin, and S. N. Ilin, Plasticheskie Massy, 10: 11 (1983) (in Russian).
3.V. Yu. Masyurov, V. S. Osipchik, E. D. Lebedeva, and V. S. Glukhovskoy, Plasticheskie Massy, 3: 22 (2005) (in Russian); https://elibrary.ru/item.asp?id=22982338
4.V. F. Matyushov, M. Ya. Avinovitskaya, and G. I. Khmelenko, Ukrainskiy Khimicheskiy Zhurnal, 55, No. 8: 865 (1989) (in Ukrainian).
5.L. A. Abrakhmanova, V. H. Fakhrutdinova, and V. G. Khozin, PlasticheskieMassy, 6: 58 (1980) (in Russian).
6.S. M. Divgun, T. P. Boronina, and I. I. Geysman, Plasticheskie Massy, 7: 41(1988) (in Russian).
7.I. V. Koval, T. G. Oleynik, A. S. Grinko, and I. N. Tsybko, Voprosy Khimii iKhimicheskoy Tekhnologii, 1: 154 (2000) (in Ukrainian).
8.M. S. Akutin, N. N. Tikhonov, S. A. Emelyanova, N. A. Glotova, andN. Malkhis, Plasticheskie Massy, 9: 58 (1981) (in Russian).
9.N. A. Gribanova, Plasticheskie Massy, 4: 8 (1995) (in Russian).
10.G. G. Ushakova, F. A. Golikov, V. S. Ionkhin, and V. A. Voskresenskiy,Khimiya i Khimicheskaya Tekhnologiya, 15, No. 12: 1857 (1972) (in Rus-sian).
11.E. R. Galimov, G. G. Ushakova, and R. G. Timergaleev, PlasticheskieMassy, 12: 28 (1974) (in Russian).
12.M. H. Giniyatullin, R. G. Timerleev, and M. Kh. Khasanov, PlasticheskieMassy, 6: 9 (1973) (in Russian).
13.T. L. Malysheva and S. V. Golovan, International Polymer Science andTechnology, 39, No. 1: 33 (2012) (in Russian); https://doi.org/10.1177/0307174X1203900107
14.T. L. Malysheva, S. V. Golovan, and D. A. Klimchuk, Nanosistemi, Nano-materiali, Nanotehnologii, 10, No. 4: 687 (2012) (in Ukrainian);2012, vol 10, issue 4, p.0687-0700 Abstract (imp.kiev.ua)
15.Ň. L. Malysheva, A. L. Tolstov, and E. V. Gres, Polimernyy Zhurnal, 2: 96(2019) (in Ukrainian); http://ihvs.kiev.ua/pj/wp-content/uploads/2019/10/Malyisheva2.pdf
16.Yu. S. Lipatov, V. F. Matyushov, and A. V. Krolenko, Vysokomole-kulyarnyye Soyedineniya. Ser. A, 29, No. 4: 850 (1987) (in Russian); http://polymsci.ru/static/Archive/1987/VMS_1987_T29_4/VMS_1987_T29_4_850-854.pdf
17.T. L. Malysheva, V. F. Matyushov, S. S. Demchenko, and Yu. S. Lipatov,Vysokomolekulyarnyye Soyedineniya. Ser. B, 27, No. 6: 487 (1985) (in Rus-sian); http://polymsci.ru/static/Archive/1985/VMS_1985_T27ks_6/VMS_1985_T27ks_6_467-469.pdf
18.U. Olsher, R. M. Izatt, J.S. Bradshaw, and K. Dalley, Chem. Rev., 91: 137(1991); https://doi.org/10.1021/cr00002a003
19.V. A. Khranovskiy, Doklady AN SSSR, 285, No. 2: 406 (1985) (in Russian).
20.N. S. Prokhorova and V. A. Voskresenskiy, Vysokomolekulyarnyye Soyed-ineniya. Ser. B, 10, No. 9: 643 (1968) (in Russian); http://polymsci.ru/static/Archive/1968/VMS_1968_T10ks_9/VMS_1968_T10ks_9_643-646.pdf
21.V. A. Voskresenskiy and S. S. Shakirzyanova, Kolloidnyy Zhurnal, 27,No. 1: 19 (1965) (in Russian).
22.A. E. Kulikova, E. N. Zilberman, and N. M. Teplyakov, Vysokomole-kulyarnyye Soyedineniya. Ser. A, 9, No 9: 1884 (1967) (in Russian); http://polymsci.ru/static/Archive/1967/VMS_1967_T9_9/VMS_1967_T9_9_1884-1888.pdf
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement