Issues

 / 

2021

 / 

vol. 19 / 

Issue 2

 



Download the full version of the article (in PDF format)

H. S. Kornyushchenko, S. T. Shevchenko, V. V. Natalich, V. I. Perekrestov
«Physical-Technological Preconditions for the Formation and Structural-Morphological Characteristics of C/Zn and C/Ni Composites with a Carbon Turbostratic Component»
0375–0389 (2021)

PACS numbers: 52.77.Dq, 61.05.cp, 68.37.Hk, 68.55.J-, 81.05.U-, 81.15.Cd, 81.70.Jb

In this paper, the physical preconditions for the condensate formation in the form of porous nanosystems are analysed. Porous Zn and Ni nanosystems are obtained using a technological approach based on self-organization of low relative supersaturations of deposited vapours. Then, these layers are further used as precursors for the deposition of porous turbostratic graphite. At the first stage, precursors in the form of porous Ni or Zn nanosystems are formed on laboratory glass. At the second stage, carbon condensate is deposited by graphite sputtering. All carbon condensates are formed on the base porous Zn and Ni structures at the same technological parameters (p\(_{Ar}\)=7 Pa and P\(_w\)=80 W) that allows determining the effect of the material and structural–morphological characteristics of precursors on the structure formation of the carbon layers. The effective thickness of the carbon layers is of approximately 12–15 μm. As shown, the different morphology of porous zinc precursors has almost no effect on the further structure formation of the porous carbon nanosystems. At the same time, at the transition to precursors in the form of porous Ni systems, the structure of carbon condensates has a more developed porosity at the nanoscale. Comprehensive investigation of the obtained porous C/Zn and C/Ni composites is carried out using scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray phase analysis. As shown, in the local areas of accumulated turbostratic graphite, the preconditions for the nucleation and growth of carbon nanowalls, fibres, or diamond inclusions are formed. It is concluded that the technological approach discussed in the paper can be used to create electrodes of lithium-ion batteries.

Keywords: porous nanostructures, magnetron sputtering, carbon nanosystems, self-organization, turbostratic graphite

https://doi.org/10.15407/nnn.19.02.375

References
1. A. Eftekhari, Energy Storage Mater., 7: 157 (2017); https://doi.org/10.1016/j.ensm.2017.01.009
2. E. A. Chudinov, S. A. Tkachuk, and V. S. Shishko, Fundamental Research, 12: 385 (2011) (in Russian); Е. A. Чудинов, С. A. Ткачук, В. С. Шишко, Технические науки, 12: 385 (2011).
3. E. V. Kuzmina, L. R. Dmitrieva, A. F. Gabdullin, E. V. Karaseva, T. R. Prosochkina, and V. S. Kolosnytsin, Bashkir Chemistry Journal, 25:86 (2018) (in Russian); Е. В. Кузьмина, Л. Р. Дмитриева, A. O. Габдуллин, Е. В. Карасева, Т. Р. Просочкина, В. С. Колосницын, Баш. хим. ж., 25: 86 (2018); https://doi.org/10.17122/bcj-2018-2-86-93
4. S. Xin, Y. G. Guo, and L. J. Wan, Acc. Chem. Res., 45: 1759 (2012); https://doi.org/10.1021/ar300094m
5. S. L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J. G. Zhang, Y. Wang, J. Liu, J. Li, and G. Cao, Nano Energy, 1: 195 (2012); https://doi.org/10.1016/j.nanoen.2011.11.006
6. Nanotechnology for Lithium-Ion Batteries (Eds. Y. Abu-Lebdeh and I. Davidson) (Boston, MA: Springer: 2013); https://doi.org/10.1007/978-1-4614-4605-7
7. V. A. Krivchenko, D. M. Itkis, S. A. Evlashin, D. A. Semenenko, E. A. Goodilin, A. T. Rakhimov, A. S. Stepanov, N. V. Suetin, A. A. Pilelsky, and P. V. Voronin, Carbon, 50: 1438 (2012); https://doi.org/10.1016/j.carbon.2011.10.042
8. M. Hiramatsu, K. Shiji, H. Amano, and M. Hori, Appl. Phys. Lett., 84: 4708 (2004); https://doi.org/10.1063/1.1762702
9. D. S. Su, ChemSusChem., 2: 1009 (2009); https://doi.org/10.1002/cssc.200900046
10. D. S. Su and R. Schlogl, ChemSusChem., 3: 136 (2010); https://doi.org/10.1002/cssc.200900182
11. Yu. O. Kosminska and V. I. Perekrestov, Diam. Relat. Mater., 85: 37 (2018); https://doi.org/10.1016/j.diamond.2018.03.032
12. G. A. Glushchenko, N. V. Bulina, P. V. Novikov, G. N. Bondarenko, and G. N. Churilov, Tech. Phys. Lett., 29: 933 (2003); https://doi.org/10.1134/1.1631368
13. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, Nature, 466: 470 (2010); https://doi.org/10.1038/nature09211
14. L. Zhi, Y. S. Hu, B. E. Hamaoui, X. Wang, I. Lieberwirth, U. Kolb, J. Maier, and K. Mullen, Adv. Mater., 20: 1727 (2008); https://doi.org/10.1002/adma.200702654
15. Handbook of Thin Film Technology (Eds. L. I. Maissel and R. Glang) (New York: McGraw-Hill Book Company: 1970); Технология тонких пленок (Ред. Л. Iайселл, Р. Гленг) (Iосква: Советское радио:1977), т. 1 (пер. з англ.); Handbook Of Thin Film Technology (Maissel & Glang) : Maissel, Gland : Free Download, Borrow, and Streaming : Internet Archive
16. A. A. Chernov, E. Givargizov, Kh. S. Bagdasarov, V. A. Kuznetsov, and L. M. Demianets, Sovremennaya Kristallografiya. Obrazovanie Kristallov [Modern Crystallography. Crystal Formation] (Moscow: Nauka: 1980) (in Russian); A. A. Чернов, Е. Гиваргизов, Х. С. Багдасаров, В. A. Кузнецов, Л. I. Демьянец, Современная кристаллография. Образование кристаллов (Наука: Iосква: 1980).
17. Reactive Sputter Deposition (Eds. D. Depla and S. Mahieu) (Berlin– Heidelberg: Springer-Verlag: 2008); https://doi.org/10.1007/978-3-540-76664-3
18. A. A. Mokrenko, Yu. O. Kosminska, and V. I. Perekrestov, J. Nano- Electron. Phys, 2: 40 (2010) (in Russian); A. A. Iокренко, Ю. A. Косминская, В. И. Перекрестов, Журнал нано- електрон. фіз., 2: 40 (2010).
19. V. I. Perekrestov, A. I. Olemskoi, Y. O. Kosminska, and A. A. Mokrenko, Phys. Lett. A, 373: 3386 (2009); https://doi.org/10.1016/j.physleta.2009.07.032
20. V. I. Perekrestov, Y. O. Kosminska, A. A. Mokrenko, I. N. Kononenko, and A. S. Kornyushchenko, Vacuum, 86: 111 (2011); https://doi.org/10.1016/j.vacuum.2011.05.003
21. V. I. Perekrestov, A. V. Koropov, and S. N. Kravchenko, Phys. Solid State, 44: 1131 (2002) (in Russian); В. И. Перекрестов, A. В. Коропов, С. Н. Кравченко, Физика твердого тела, 44: 1131 (2002).
22. V. I. Perekrestov, A. S. Kornyushchenko, and Y. O. Kosminska, Phys. Solid State, 50: 1304 (2008) (in Russian); В. И. Перекрестов, A. С. Корнющенко, Ю. A. Косминская, Физика твердого тела, 50: 1304 (2008).
23. A. S. Kornyushchenko, A. H. Jayatissa, V. V. Natalich, and V. I. Perekrestov, Thin Solid Films, 604: 48 (2016); http://dx.doi.org/10.1016%2Fj.tsf.2016.03.017
24. V. I. Perekrestov and S. N. Kravchenko, Instrum. Exp. Tech., 45: 404 (2002); https://doi.org/10.1023/A:1016083909330
25. G. Odahara, S. Otani, C. Oshima, M. Suzuki, T. Yasue, and T. Koshikawa, Surf. Sci., 605: 1095 (2011); https://doi.org/10.1016/j.susc.2011.03.011.0
26. J. Lahiri, T. Miller, L. Adamska, I. I. Oleynik, and M. Batzill, Nano Lett., 11: 518 (2011); https://doi.org/10.1021/nl103383b
27. A. F. Belyanin, V. V. Borisov, S. A. Daghetsyan, S. A. Evlashin, A. A. Pilevsky, and V. A. Samorodov, Materials of Electronics, 6: 34 (2017); https://doi.org/10.15222/TKEA2017.6.34
28. Y. Tzeng, C.-L. Chen, Y.-Y. Chen, and C.-Y. Liu, Diam. Relat. Mater., 19: 201 (2010); https://doi.org/10.1016/j.diamond.2009.08.005
29. H.-X. Wang, N. Jiang, H. Zhang, and A. Hiraki, Carbon, 48: 4483 (2010); https://doi.org/10.1016/j.carbon.2010.08.008
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement