Issues

 / 

2021

 / 

vol. 19 / 

Issue 2

 



Download the full version of the article (in PDF format)

Deepti R. Kulkarni Narasimha H. Ayachit, Raviraj M. Kulkarni Suresh D. Kulkarni
«Optoelectronic Properties of Alumina–Tin Oxide Nanocomposites Deposited on 1D Carbon Backbone»
0363–0373 (2021)

PACS numbers: 61.05.jm, 68.37.Hk, 68.37.Lp, 78.40.-q, 78.55.Mb, 78.67.Sc, 81.70.Jb

Alumina–tin oxide nanocomposites deposited on 1D carbon backbone for solar cell and optoelectronic applications are synthesized by simple co-precipitation method. The nanocomposites are characterized by different techniques. The TEM image indicates that the prepared Al\(_2\)O\(_3\)–SnO\(_2\) nanocomposites are deposited on 1D carbon backbone. The length of the nanowire is in a few micrometers, and radius is of around 10 nm. The elemental analysis shows the presence of peaks due to Al, Sn, C and O. The average crystallite size of SnO\(_2\) is found to be 5.185 nm from XRD analysis. Further, no peaks related Al\(_2\)O\(_3\) are detected indicating amorphous phase of Al\(_2\)O\(_3\) nanoparticles. Room-temperature photoluminescence spectroscopy of Sn–Al\(_2\)O\(_3\) nanowires reveals emission ranging from 410 nm to 540 nm comprising of multiple emission bands centred at 433 and 504 nm and additionally shoulder peaks at 445, 455, 478 and 488 nm. None of these bands corresponds to the band-gap of the material and, hence, should be due to different defect states within the band-gap. UV–Visible diffused reflectance studies reveal that the band-gap of the nanocomposites is of 4.23 eV. BET investigation shows that the specific surface area of the nanocomposites is of 130 m\(^2\)·g\(^{-1}\) and pore volume is of 0.268 cm\(^3\)·g\(^{-1}\). The estimated high exciton-binding energy of alumina–tin oxide nanocomposites deposited on 1D carbon backbone is crucial in optoelectronic applications.

Keywords: alumina, tin oxide, 1D carbon backbone, band-gap, solar cells, optoelectronics

https://doi.org/10.15407/nnn.19.02.363

References
1. R. Kumaravel, V. Krishnakumar, V. Gokulakrishnan, K. Ramamurthi, and K. Jeganathan, Thin Solid Films, 518, Iss. 8: 2271 (2010); https://doi.org/10.1016/j.tsf.2009.08.049
2. D. Liu, S. Ren, X. Ma, C. Liu, L. Wu, W. Li, J. Zhang, and L. Feng, RSC Adv., 7, Iss. 14: 8295 (2017); https://doi.org/10.1039/C6RA27146D
3. C. Messaadi, M. Ghrib, H. Chenaina, M. Manso-Silvan and H. Ezzaouia, J. Mater. Sci.: Mater. Electron., 29, Iss. 4: 3095 (2018); https://doi.org/10.1007/s10854-017-8241-3
4. S. Dinesh, M. Anandan, V.K. Premkumar, S. Barathan, G. Sivakumar, and N. Anandhan, Mater. Sci. Eng. B, 214: 37 (2016); https://doi.org/10.1016/j.mseb.2016.08.006
5. K. Han, M. Xie, L. Zhang, L.Yan, J. Wei, G. Ji, Q. Luo, J. Lin, Y. Hao, and C.-Q. Ma, Sol. Energy Mater. Sol. Cells, 185: 399 (2018); https://doi.org/10.1016/j.solmat.2018.05.048
6. F. F. Vidor, T. Meyers, G. I. Wirth, and U. Hilleringmann, Microelectron. Eng., 159: 155 (2016); https://doi.org/10.1016/j.mee.2016.02.059
7. N. K. Mishra, C. Kumar, A. Kumar, M. Kumar, P. Chaudhary, and R. Singh, Mater. Sci.–Poland, 33, Iss. 4: 714 (2015); https://doi.org/10.1515/msp-2015-0101
8. D. Wang, S. Liu, M. Shao, Q. Li, Y. Gu, J. Zhao, X. Zhang, J. Zhao, and Y. Fang, Ind. Eng. Chem. Res., 57, Iss. 21: 7136 (2018); https://doi.org/10.1021/acs.iecr.8b00039
9. Z. Pan, H. Rao, I. Mora-Sero, J. Bisquert, and X. Zhong, Chem. Soc. Rev.47, Iss. 20: 7659 (2018); https://doi.org/10.1039/C8CS00431E
10. X. Mao, R. Zhou, S. Zhang, L. Ding, L. Wan, S. Qin, Z. Chen, J. Xu, and S. Miao, Sci. Rep., 6: 19390 (2016); https://doi.org/10.1038/srep19390
11. C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan, and E. Xie, Nanoscale, 4, Iss. 11: 3475 (2012); https://doi.org/10.1039/C2NR30349C
12. B. Liu, L. Wang, Y. Zhu, Y. Xia, W. Huang, and Z. Li, Electrochim. Acta, 295: 130 (2019); https://doi.org/10.1016/j.electacta.2018.10.129
13. H. M. A. Javed, W. Que, X. Yin, L. B. Kong, J. Iqbal, and M. S. Mustafa, Mater. Res. Bull., 109: 21 (2019); https://doi.org/10.1016/j.materresbull.2018.09.016
14. Y. Zhou, W. Xu, S. Lv, C. Yin, J. Li, B. Zhu, Y. Liu, and C. He, J. Alloys Compd., 732: 555 (2018); https://doi.org/10.1016/j.jallcom.2017.10.234
15. S. Dabbabi, T. B. Nasr, S. Ammar, and N. Kamoun, Superlattices and Microstruct., 123: 129 (2018); https://doi.org/10.1016/j.spmi.2018.05.058
16. T. Toupance, O. Babot, B. Jousseaume, and G. Vilaca, Chem. Mater., 15, Iss. 24: 4691 (2003); https://doi.org/10.1021/cm0344459
17. S. Das and V. Jayaraman, Prog. Mater. Sci., 66: 112 (2014); https://doi.org/10.1016/j.pmatsci.2014.06.003
18. K. Gotlib-Vainstein, I. Gouzman, O. Girshevitz, A. Bolker, N. Atar, E. Grossman, and C. N. Sukenik, ACS Appl. Mater. Interfaces, 7, Iss. 6:3539 (2015); https://doi.org/10.1021/am5072817
19. Y. S. Jung and S. S. Lee, J. Cryst. Growth, 259, Iss. 4: 343 (2003); https://doi.org/10.1016/j.jcrysgro.2003.07.006
20. M. H. Boratto, L. V. de Andrade Scalvi, J. L. B. Maciel Jr., M. J. Saeki, and E. A. Floriano, Materials Research, 17, Iss. 6: 1420 (2014); http://dx.doi.org/10.1590/1516-1439.285114
21. G. He, J. Gao, H. Chen, J. Cui, Z. Sun, and X. Chen, ACS Appl. Mater. Interfaces, 6, Iss. 24: 22013 (2014); https://doi.org/10.1021/am506351u
22. Y. J. Kim, S. M. Kim, S. Heo, H. Lee, H. I. Lee, K. E. Chang, and B. H. Lee, Nanotechnology, 29, Iss. 5: 055202 (2018); https://doi.org/10.1088/1361-6528/aaa0e2
23. X. Cao, Q. He, W. Shi, B. Li, Z. Zeng, Y. Shi, Q. Yan, and H. Zhang, Small, 7, Iss. 9: 1199 (2011); https://doi.org/10.1002/smll.201100071
24. Z. Salam, E. Vijayakumar, and A. Subramania, RSC Adv., 4, Iss. 95: 52871 (2014); https://doi.org/10.1039/C4RA09151E
25. S. Cholan, N. Shanmugam, N. Kannadasan, K. Sathishkumar, and K. Deivam, J. Mater. Res. Technol., 3, Iss. 3: 222 (2014); https://doi.org/10.1016/j.jmrt.2014.04.001
26. M. Karmaoui, A. B. Jorge, P. F. McMillan, A. E. Aliev, R. C. Pullar, J. A. Labrincha, and D. M. Tobaldi, ACS Omega, 3, Iss. 10: 13227 (2018); https://doi.org/10.1021/acsomega.8b02122
27. E. O. Filatova and A. S. Konashuk, J. Phys. Chem. C, 119, Iss. 35: 20755 (2015); https://doi.org/10.1021/acs.jpcc.5b06843
28. S. Toyoda, T. Shinohara, H. Kumigashira, M. Oshima, and Y. Kato, Appl. Phys. Lett., 101, Iss. 23: 231607 (2012); https://doi.org/10.1063/1.4769818
29. J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, J. Phys. Chem. B, 106, Iss. 15: 3823 (2002); https://doi.org/10.1021/jp0125552
30. D. Calestani, L. Lazzarini, G. Salviati, and M. Zha, Cryst. Res. Technol., 40: 937 (2005); https://doi.org/10.1002/crat.200410463
31. J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou, and Z. L. Wang, Small., 2, Iss. 1: 116 (2006); https://doi.org/10.1002/smll.200500210
32. S. Brovelli, N. Chiodini, F. Meinardi, A. Lauria, and A. Paleari, Appl. Phys. Lett., 89, Iss. 15: 153126 (2006); https://doi.org/10.1063/1.2362583
33. F. Gu, S. F. Wang, C. F. Song, M. K. Lu, Y. X. Qi, G. J. Zhou, D. Xu, and D. R. Yuan, Chem. Phys. Lett., 372, Iss. 3: 451 (2003); https://doi.org/10.1016/S0009-2614(03)00440-8
34. F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu, and D. R. Yuan, J. Phys. Chem. B, 108, Iss. 24: 8119 (2004); https://doi.org/10.1021/jp036741e
35. Z. Jiang, Z. Liu, Y. Li, and W. Duan, Phys. Rev. Lett., 118, Iss. 26: 266401 (2017); https://doi.org/10.1103/PhysRevLett.118.266401
36. A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker, Solid State Commun., 203: 16 (2015); https://doi.org/10.1016/j.ssc.2014.11.005
37. T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B, 85, Iss. 20: 205302 (2012); https://doi.org/10.1103/PhysRevB.85.205302
38. A. Ramasubramaniam, Phys. Rev. B, 86, Iss. 11: 115409 (2012); https://doi.org/10.1103/PhysRevB.86.115409
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement