Issues

 / 

2021

 / 

vol. 19 / 

Issue 2

 



Download the full version of the article (in PDF format)

Abhigyan Ganguly, Siddhartha S. Nath, Viranjay M. Srivastava
«Comparative Analysis of ZnO Quantum Dots Synthesized on PVA and PVP Capping Matrix»
0337–0345 (2021)

PACS numbers: 61.05.cp, 68.37.Hk, 68.37.Og, 78.40.-q, 78.67.Hc, 81.07.Ta, 81.16.Be

Polymer capping matrix plays an important role in the synthesis of quantum dots via chemical methods. In this article, polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) polymers are used as capping matrix for the synthesis of quantum dots. Quantum dots of zinc oxide are directly synthesized from ZnO powder by thermal quenching methods on PVA and PVP capping matrix, and standard characterization techniques are utilized to characterize the samples. Thereafter, comparative analysis for the properties of ZnO quantum dots for PVA and PVP is presented.

Keywords: quantum dots, quenching, polyvinyl alcohol, polyvinyl pyrrolidone, nanotechnology

https://doi.org/10.15407/nnn.19.02.337

References
1. J. G. Lu, Z. Z. Ye, Y. Z. Zhang, Q. L. Liang, Sz. Fulita, and Z. L. Wang, Applied Physics Letters, 89: 023122 (2006).
2. P. A. Rodnyi and I. V. Khodyuk, Optics and Spectroscopy, 111, No. 5: 776 (2011).
3. D. Cui, J. Xu, S.-Y. Xu, Ge. Paradee, B. A. Lewis, and M. D. Gerhold, IEEE Transactions on Nanotechnology, 5, Iss. 4: 362 (2006); DOI: 10.1109/TNANO.2006.877432
4. Z. Fan, P. Chang, and J. G. Lu, Applied Physics Letters, 85, No. 25: 6128 (2004).
5. H. J. Lee, D. Y. Kim, J. S. Yoo, J. Bang, S. Kim, and S. M. Park, Bull. Korean Chem. Soc., 28: 953 (2007).
6. L. S. Devi, K. N. Devi, B. I. Sharma, and H. N. Sarma, Indian J. Phys., 88, No. 5: 477 (2014).
7. О. F. Suyer, S. F. Wuister, J. J. Kelly, and A. Meijerink, Nano Letters, 1, No. 8: 429 (2001).
8. A. Ganguly and S. S. Nath, Material Science and Engineering: B, 225:114532 (2020).
9. S. S. Nath, D. Chakdar, G. Gope, and D. K. Avasthi, Journal of Applied Physics, 105, No. 8: 094305 (2009).
10. A. Zaban, O. L. Micic, B. A. Gregg, and A. J. Nozik, Langmuir, 14: 3153 (1998).
11. B. Debnath, G. Halder, and S. Bhattacharya, Science of Advanced Materials, 6, No. 6: 1160 (2014).
12. A. Ganguly, S. S. Nath, and M. Choudhury, IEEE Journal of Photovoltaics,8, No. 6: 1656 (2018); DOI: 10.1109/JPHOTOV.2018.286174813. A. Ganguly, S. S. Nath, and M. Choudhury, J. Nanoelectron. Optoelectron., 13, No. 6: 906 (2018); DOI: https://doi.org/10.1166/jno.2018.2318
14. A. K. Alim et al., Phys. Rev. B, 73, Iss. 16: 165317 (2006).
15. P. K. Santra and P. V. Kamat J. Am. Chem. Soc., 134: 2508 (2012).
16. A. Ganguly et al., Technology Lett. Oct., 30, Iss. 19: 1735 (2018).
18. A. Ganguly and V. M. Srivastava, 2nd International Conference on VLSI De- vice, Circuit and System (VLSI DCS) (18–19 July 2020, India), p. 5.
19. A. Ganguly et al., Chalcogenide Letters, 17, No. 9: (2020).
20. P. S. Ramkumar et al., phys. stat. sol. (a), 202, No. 3: 425 (2005).
21. Z. Huang et al., Materials Letters, 95: 139 (2013).
22. A. Dandia et al., Journal of Molecular Catalysis A: Chemical, 394, No. 11: 244 (2014).
23. M. Raja et al., Superlattices and Microstructures, 80: 53 (2015).
24. K. Poornima et al., Superlattices and Microstructures, 83: 147 (2015).
25. T. Zhao, E. D. Goodwin, J. Guo, H. Wang, B. T. Diroll, C. B. Murray, and C. R. Kagan, ACS Nano, 10, No. 10: 9267 (2016); https://doi.org/10.1021/acsnano.6b03175
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement