Issues

 / 

2021

 / 

vol. 19 / 

Issue 2

 



Download the full version of the article (in PDF format)

Yu. Prikhozha, R. Balabai
«The Comparison of Intercalation of Na and Li Atoms in Nanostructured SnS\(_2\) Anode of Battery: ab initio Calculation»
0273–0280 (2021)

PACS numbers: 66.30.Pa, 68.43.Bc, 71.15.Dx, 71.15.Mb, 71.20.Tx, 73.20.At, 73.21.Ac

Applying the methods of the electron-density functional and ab initio pseudopotential, the computational experiment is carried out, using the author’s software complex on atomic models that correctly reproduced the 2D-layer structure of tin chalcogenides with intercalated Na and Li atoms. We obtain the spatial distributions of the valence electrons’ density, the energy reliefs of migration of the Na and Li atoms in the nanostructured SnS\(_2\) interlayer under various degrees of filling of the interlayers with metal atoms. As established, the motion of the Na and Li atoms is accompanied by the overcoming of energy barriers. Barriers depend on the degree of filling of the nanostructured SnS\(_2\) interlayer with metal atoms. The optimum filling of the SnS\(_2\) interlayer with the Na and Li atoms in percentage of 75% is determined, at which the motion of the Na and Li atoms is accompanied by the least energy losses. The processes occurring inside the SnS\(_2\) layer during the migration of the Na and Li atoms are determined by the interaction of metal atoms with each other, which are filling the layer, as well as by the interactions of the Na and Li atoms with a surface SnS\(_2\) layer consisting of sulphur atoms. The distributions of the valence electrons’ density, the energy barriers for migration of the Na and Li atoms in the intermediate SnS\(_2\) layer are compared.

Keywords: anode of battery, Na and Li atoms, nanostructured SnS\(_2\) films, electron density functional, ab initio pseudopotential, energy reliefs of migration

https://doi.org/10.15407/nnn.19.02.273

References
1. R. Schmuch, R. Wagner, G. Horpel, T. Placke, and M. Winter, Natl. Energy, 3, No. 4: 267 (2018); https://doi.org/10.1038/s41560-018-0107-2
2. L. Liu, X. Yin, J. Li, S. Wang, Y. Guo, and L. Wan, Adv. Mater., 30, No.10: 1706216 (2018); https://doi.org/10.1002/adma.201706216
3. H. Pan, Y. Hu, and L. Chen, Energy & Environ. Sci., 6: 2338 (2013); https://doi.org/10.1039/C3EE40847G
4. W. Tang, X. Wang, D. Xie, X. Xia, C. Gu, and J. Tu, J. Mater. Chem. A, 6: 18318 (2018); https://doi.org/10.1039/C8TA06905K
5. F. Yang, Z. Zhang, Y. Han, K. Du, Y. Lai, and J. Li, Electrochim. Acta, 178: 871 (2015); https://doi.org/10.1016/j.electacta.2015.08.051
6. A. Metrot, D. Guerard, D. Billaud, and A. Herold, Synthetic Metals, 1: 363 (1980); https://doi.org/10.1016/0379-6779(80)90071-5
7. P. Lu, Y. Sun, H. Xiang, X. Liang, and Y. Yu, Adv. Energy Mater., 8: 1702434 (2018); https://doi.org/10.1002/aenm.201702434
8. H. Pan, Y. Hu, and L. Chen, Energy Environ. Sci., 6: 2338 (2013); https://doi.org/10.1039/C3EE40847G
9. Y. Sun, X. Liang, H. Xiang, and Y. Yu, Chin. Chem. Lett., 28: 2251 (2017).
10. L. Wang, L. Yu, X. Wang, M. Srinivasan, and Z. Xu, Mater. Chem., 3: 9353 (2015); https://doi.org/10.1039/C4TA06467D
11. F. Cheng, J. Chen, and X. Gou, Adv. Mat., 18: 2561 (2006); https://doi.org/10.1002/adma.200600912
12. E. Cho, K. Song, M. H. Park, K.-W. Nam, and Y.-M. Kang, Small, 12, Iss.18: 2510 (2016); https://doi.org/10.1002/smll.201503168
13. S. Fleischmann, T. S. Dorr, A. Frank, S. W. Hieke, D. Doblas-Jimenez, C. Scheu, P. W. de Oliveira, T. Kraus, and V. Presser, Batteries & Supercaps, Iss. 2: 668 (2019); https://doi.org/10.1002/batt.201900035
14. H. Liu, H. Guo, B. Liu, M. Liang, K. Adair, and X. Sun, Adv. Functional Mater., 28: 1707480 (2018); https://doi.org/10.1002/adfm.201707480
15. H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, and S. Qiao, Adv. Energy Mater., 2, No. 8: 970 (2012); https://doi.org/10.1002/aenm.201200087
16. L. Shi, D. Li, P. Yao, J. Yu, C. Li, B. Yang, C. Zhu, and J. Xu, Small, 14, Iss. 41: 1870187 (2018); https://doi.org/10.1002/smll.201870187
17. D. Su, S. Dou, and G. Wang, Chem. Commun., 50, No. 32: 4192-5 (2014); https://doi.org/10.1039/C4CC00840E
18. G. Wang, J. Zhang, S. Yang, F. Wang, X. Zhuang, K. Mullen, and X. Feng, Adv. Energy Mater., 8, No. 8: 1702254 (2018); https://doi.org/10.1002/aenm.201702254
19. S. Wang, F. Gong, S. Yang, J. Liao, M. Wu, Z. Xu, C. Chen, X. Yang, F. Zhao, B. Wang, Y. Wang, and X. Sun, Adv. Functional Mater., 28, No.34: 1801806 (2018); https://doi.org/10.1002/adfm.201801806
20. S. Chu, Y. Cui, and N. Liu, Nat. Mater., 16: 16 (2017); https://doi.org/10.1038/nmat4834
21. Z. Li, J. Ding, and D. Mitlin, Acc. Chem. Res., 16: 1657 (2015); https://doi.org/10.1021/acs.accounts.5b0014
22. C. Grey and J. Tarascon, Nat. Mater., 16: 45 (2017); https://doi.org/10.1038/nmat4777
23. X. Ou, L. Cao, X. Liang, F. Zheng, H.-S. Zheng, X. Yang, J.-H. Wang, C. Yang, and M. Liu, ACS Nano, 13, No. 3: 3666 (2019); https://doi.org/10.1021/acsnano.9b00375
24. B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. Meng, T. Wang, and J. Lee, Adv. Mater., 26, No. 23: 3854 (2014); https://doi.org/10.1002/adma.201306314
25. C. Zhai, N. Du, and H. Yang, Chem. Commun., 47: 1270 (2011); https://doi.org/10.1039/C0C03023F
26. Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, and X. Zhao, Adv. Functional Mater., 25: 481 (2015); https://doi.org/10.1002/adfm.201402833
27. Y. Zhao, B. Guo, Q. Yao, J. Li, J. Zhang, K. Hou, and L. Guan, Nanoscale, 10, No. 17: 7999 (2018); https://doi.org/10.1039/c8nr01783b
28. Ab initio Calculation [Electronic course]: Internet-portal Access mode: http://sites.google.com/a/kdpu.edu.ua/calculationphysics/ - Screen title
29. W. Kohn and L. Sham, Phys. Rev., 140, No. 4A: A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
30. G. Makov, R. Shah, and M. Payne, Phys. Rev., B53: 15513 (1996); https://doi.org/10.1103/PhysRevB.53.15513
31. G. Bachelet, D. Hamann, and M. Schluter, Phys. Rev., B26: 4199 (1982); https://doi.org/10.1103/PhysRevB.26.4199
32. R. Balabai and Yu. Prikhozha, J. Phys. Stud., 23, No. 3: 3703-1 (2019) (in Ukrainian); https://doi.org/10.30970/jps.23.3703
33. R. Balabai and Yu. Prikhozha, Phys. Chem. Solid State, 20, No. 2: 120 (2019) (in Ukrainian); https://doi.org/10.15330/pcss.20.2.120-126
34. R. Balabai, D. Kravtsova, P. Merzlykin, and Yu. Prihozhaya, J. Nanophotonics, 12, No. 3: 036003 (2018) (in Ukrainian); https://doi.org/10.1117/1.JNP.12.036003
35. R. M. Balabai, Yu. Prikhozha, and O. H. Tadeusz, Sensor Electronics and Ìicrosystem Technologies, 6, No. 1: 50 (2019) (in Ukrainian); http://dx.doi.org/10.18524/1815-7459.2019.1.159487
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement