Issues

 / 

2021

 / 

vol. 19 / 

Issue 2

 



Download the full version of the article (in PDF format)

V. M. Boychuk, M. A. Hodlevskà, L. V. Mokhnatska, V. O. Kotsyubynsky, A. I. Kachmar
«The Effect of the pH on the Nucleation of Iron-Containing Phases: Analysis Based on Partial Charge Theory and Mossbauer Studies»
0247–0262 (2021)

PACS numbers: 61.05.cp, 61.05.Qr, 68.43.Mn, 68.43.Nr, 82.33.Ln, 82.45.Yz, 82.60.Nh

The effect of the pH values on the nucleation of ferric oxyhydroxide and oxide phases in aqueous solutions of iron salts is analysed using partial charge theory. As experimentally shown, at pH in a range of 6.0–6.5, the nucleation of the β-FeOOH phase occurs, while at pH=10.5–11.0, the magnetite phase is formed. The structural and morphological properties of the obtained ultrafine iron compounds are analysed by x-ray diffraction analysis, adsorption porosimetry, and Mossbauer spectroscopy.

Keywords: nanodispersed iron oxides, nucleation, structure formation, Mossbauer spectroscopy

https://doi.org/10.15407/nnn.19.02.247

References
1. J. Wang, Current-Confined Effect of Magnetic Nano-Current-Channel (NCC) for Magnetic Random Access Memory (MRAM) (U.S. Patent No. 7.732.881) (2010).
2. F. D. Stoian and S. Holotescu, J. Phys.: Conf. S, 547, No. 1: 012044 (2014); doi:10.1088/1742-6596/547/1/012044
3. S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai, and G. Jiang, J. Haz. Mat., 167, Nos. 1–3: 560 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.024
4. S. Capone, M. G. Manera, A. Taurino, P. Siciliano, R. Rella, S. Luby, and E. Majkova, Langmuir, 30, No. 4: 1190 (2014); https://doi.org/10.1021/la404542u
5. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Gratzel, J. Am. Chem. Soc., 132: 7436 (2010); https://doi.org/10.1021/ja101564f
6. T. K. Indira and P. K. Lakshmi, Int. J. Pharm. Sci. Nanotechnol, 3, No. 3: 1035 (2010); https://doi.org/10.1590/S1984-82502015000200002
7. O. Butenko, V. Boychuk, B. Savchenko, V. Kotsyubynsky, V. Khomenko, and V. Barsukov, Mater. Today: Proceedings, 6: 270 (2019); https://doi.org/10.1016/j.matpr.2018.10.104
8. R. C. Semelka and T. K. Helmberger, Radiology, 218, No. 1: 27 (2001); https://doi.org/10.1148/radiology.218.1.r01ja2427
9. J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri Zadeh, and S. K. Kamrava, J. Controlled Release, 235: 205 (2016); https://doi.org/10.1016/j.jconrel.2016.05.062
10. P. Lian, X. Zhu, H. Xiang, Z. Li, W. Yang, and H. Wang, Electrochimica Acta, 56, No. 2: 834 (2010); https://doi.org/10.1016/j.electacta.2010.09.086
11. T. Cottineau, M. Toupin, T.Delahaye, T. Brousse and D. Belanger, Appl. Phys. A, 82, No. 4: 599 (2006); https://doi.org/10.1007/s00339-005-3401-3
12. H. V. Tran, T. V. Nguyen, N. D. Nguyen, B. Piro, and C. D. Huynh, Micro- chimica Acta, 185, No. 5: 270 (2018); https://doi.org/10.1007/s00604-018-2804-8
13. G. Rao, H. Zhao, J. Chen, W. Deng, B. Jung, A. Abdel-Wahab, and Y. Li, Catalysis Communications, 97: 125 (2017); https://doi.org/10.1016/j.catcom.2017.04.039
14. R. Chen, I. K. Puri, and I. Zhitomirsky, Ceramics International, 44, No. 15: 18007 (2018); https://doi.org/10.1016/j.ceramint.2018.07.002
15. M. Henry, J. P. Jolivet, and J. Livage, Struct. Bonding, 77: 153 (1992); https://doi.org/10.1007/BFb0036968
16. T. K. Sham, J. B. Hastings, and M. L. Perlman, J. Am. Chem. Soc., 102, No.18: 5904 (1980); https://doi.org/10.1021/ja00538a033
17. R. L. Martin, P. J. Hay, and L. R. Pratt, J. Phys. Chem. A, 102, No. 20: 3565 (1998); https://doi.org/10.1021/jp980229p
18. V. O. Kotsyubynsky, I. F. Myronyuk, L. I. Myronyuk, V. L. Chelyadyn, M. H. Mizilevska, A. B. Hrubiak, and F. M. Nizamutdinov, Materialwissen- schaft und Werkstofftechnik, 47, Nos. 2–3: 288 (2016); https://doi.org/10.1002/mawe.201600491
19. M. Henry, J. P. Jolivet and J. Livage, Chem. Spectrosc. Appl. Sol–Gel Glass- es, 77: 153 (1992); https://doi.org/10.1007/BFb0036968
20. V. Boychuk, V. Kotsyubynsky, K. Bandura, M. Hodlevska, B. Dzundza, and O. Khatsevych, Phys. Chem. Solid State, 20, No. 2: 156 (2019); https://doi.org/10.15330/pcss.20.2.156-164
21. R. L. Martin, P. J. Hay, and L. R. Pratt, J. Phys. Chem. A, 102, No. 20: 3565 (1998); https://doi.org/10.1021/jp980229p
22. C. F. Baes and R. E. Mesmer, Ber. Bunsenges Phys. Chem., 81, Iss. 2: 245 (1976); https://doi.org/10.1002/bbpc.19770810252
23. K. Zhu, W. Luo, G. Zhu, J. Wang, Y. Zhu, Z. Zou, and W. Huang, Chem. An Asian J., 12, No. 20: 2720 (2017); https://doi.org/10.1002/asia.201700964
24. J. E. Post and V. F. Buchwald, Am. Miner., 76, Nos. 1–2: 272 (1991).
25. W. S. Peternele, V. M. Fuentes, M. L. Fascineli, J. R. D. Silva, R. C. Silva, C. M. Lucci, and R. B. D. Azevedo, J. Nanomaterials, 94: (2014); https://doi.org/10.1155/2014/682985
26. J. Landers, G. Y. Gor, and A. V. Neimark, Colloids and Surfaces A: Physi- cochemical and Engineering Aspects, 437: 3 (2013); https://doi.org/10.1016/j.colsurfa.2013.01.007
27. X. Rao, X. Su, C. Yang, J. Wang, X. Zhen, and D. Ling, D. Cryst. Eng. Comm., 15, No. 36: 7250 (2013); https://doi.org/10.1039/C3CE40430G
28. D. N. Bakoyannakis, E. A. Deliyanni, A. I. Zouboulis, K. A. Matis, L. Nalbandian, and T. Kehagias, Microporous and Mesoporous Materials, 59, No. 1: 35 (2003); https://doi.org/10.1016/S1387-1811(03)00274-9
29. Y. X. Chen, L. H. He, P. J. Shang, Q. L. Tang, Z. Q. Liu, H. Liu, and L. P. Zhou, J. Mater. Science and Techn., 27, No. 1: 41 (2011); https://doi.org/10.1016/S1005-0302(11)60023-6
30. K. A. Cychosz, R. Guillet-Nicolas, J. Garcia-Martinez, and M. Thommes, Chem. Soc. Rev., 46, No. 2: 389 (2017); https://doi.org/10.1039/C6CS00391E/
31. G. Fagerlund, Materiaux et Construction, 6, No. 3: 239 (1973); https://doi.org/10.1007/BF02479039
32. S. J. Oh, D. C. Cook, and H. E. Townsend, Hyperfine Interact., 112, Nos. 1–4: 59 (1998); https://doi.org/10.1023/A:1011076308501
33. A. E. Tufo, K. E. Garcia, C. A. Barrero, and E. E. Sileo, Hyperfine Inter- act., 224, Nos. 1–3: 239 (2014); https://doi.org/10.1007/s10751-013-0830-9
34. S. V. Vonsovsky, Magnetizm [Magnetism] (Moscow: Nauka: 1971) (in Rus- sian).
35. J. Takagi, M. Ozaki, K. Shigemasa, and T. Mizoguchi, Mater. Trans., 51, No. 7: 1330 (2010); https://doi.org/10.2320/matertrans.M2010086
36. M. Knobel, W. C. Nunes, L. M. Socolovsky, E. De Biasi, J. M. Vargas, and J. C. Denardin, J. Nanoscience and Nanotechnology, 8: 2836 (2008); https://doi.org/10.1166/jnn.2008.15348
37. A. G. Roca, M. P. Morales, K. O’Grady, and C. J. Serna, Nanotechnology, 17, No. 11: 2783 (2006); https://doi.org/10.1088/0957-4484/17/11/010
38. S. Krupichka, Fizika Ferritov i Rodstvennykh i Magnitnykh Okislov [Physics of Ferrites and Related Magnetic Oxides] (Moscow: Mir: 1976) (in Russian).
39. N. A. Usov, M. S. Nesmeyanov, and V. P. Tarasov, Sci. Rep., 8, No. 1: 1224 (2018); https://doi.org/10.1038/s41598-017-18162-8
40. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, Russ. Chem. Rev., 74, No. 6: 489 (2005); https://doi.org/10.1070/RC2005v074n06ABEH000897
41. V. N. Nikiforov, B. L. Oksengendler, A. N. Ignatenko, and V. Y. Irkhin, arXiv preprint arXiv:1206.6985 (2012).
42. Recent Advances in Rock Magnetism, Environmental Magnetism and Paleo- magnetism: International Conference on Geomagnetism, Paleomagnetism and Rock Magnetism (October 2017, Kazan, Russia) (Eds. D. Nurgaliev, V. Shcherbakov, A. Kosterov, and S. Spassov) (Cham: Springer International Publishing: 2019); https://doi.org/10.1007/978-3-319-90437-5
43. D. Kechrakos, K. N. Trohidou, and M. Vasilakaki, J. Magn. Magn. Mater., 316, No. 2: 291 (2007): https://doi.org/10.1016/j.jmmm.2007.02.122
44. V. Kotsyubynsky, V. Moklyak, and A. Hrubiak, Materials Science-Poland, 32, No. 3: 481 (2014); https://doi.org/10.2478/s13536-014-0202-4
45. V. N. Nikiforov, B. L. Oksengendler, A. N. Ignatenko, and V. Y. Irkhin, arXiv preprint arXiv:1206.6985 (2012).
46. M. Knobel, W. C. Nunes, L. M. Socolovsky, E. De Biasi, J. M. Vargas, and J. C. Denardin, J. Nanoscience and Nanotechnology, 8: 2836 (2008); https://doi.org/10.1166/jnn.2008.15348
47. J. L. Dormann, L. Bessais, and D. Fiorani, J. Phys. C, 21: 2015 (2000); https://doi.org/10.1088/0022-3719/21/10/019
48. S. Morup and M. F. Hansen, Superparamagnetic Particles. In: Handbook of Magnetism and Advanced Magnetic Materials. Novel Materials: Ferro-, Ferri-, and Antiferrimagnetic Nanoparticles (Eds. H. Kronmuller, S. Parkin, M. Coey, A. Inoue, and H. Kronmuller) (John Wiley & Sons, Ltd.: 2007); https://doi.org/10.1002/9780470022184.hmm409
49. D. Predoi, V. Kuncser, and G. Filoti, Romanian Reports in Physics, 56, No. 3: 373 (2004).
50. N. A. Usov, M. S. Nesmeyanov, and V. P. Tarasov, Sci. Rep., 8, No. 1: 1224 (2018); https://doi.org/10.1038/s41598-017-18162-8
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement