Issues

 / 

2021

 / 

vol. 19 / 

Issue 1

 



Download the full version of the article (in PDF format)

O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. I. Polovynko, Zh. Ya. Tsapovska, D. S. Leonov
«Surface Morphology of Thin β-Ga\(_2\)O\(_3\) Films Obtained by Radio-Frequency Sputtering»
0159–0165 (2021)

PACS numbers: 61.72.Mm, 68.35.Ct, 68.37.Ps, 68.55. J-, 81.07.-b, 81.15.Cd, 81.40.Tv

Thin films of β-Ga\(_2\)O\(_3\) formed from nanocrystalline grains are obtained by the method of radio-frequency (RF) ion-plasma sputtering. Investigations of the surface morphology of thin films by atomic force microscopy (AFM) have shown that the average size of nanocrystalline grains, which form films, increases during thermal treatment. Based on the analysis of the results of the distribution of grain diameters, it is found that, regardless of fulfilment of thermal treatment, for thin films of β-Ga\(_2\)O\(_3\), there is a trimodal distribution, which is formed during the deposition of films. The fulfilment of thermal treatment does not change the shape of this distribution and leads to a uniform increase of the grain sizes throughout the entire distribution.

Keywords: gallium oxide, thin films, nanocrystallites, trimodal distribution

https://doi.org/10.15407/nnn.19.01.159

References
1. K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura,M. Hirano, and H. Hosono, Appl. Phys. Lett., 88, No. 9: 092106 (2006).
2. N. D. Cuong, Y. W. Park, and S. G. Yoon, Sensors and Actuators B: Chemi-cal, 140, No. 1: 240 (2009).
3. M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett., 77, No. 6:4166 (2000).
4. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. S. Zvizlo,and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 17, No. 3:483 (2019); https://doi.org/10.15407/nnn.17.03.483
5. J.-G. Zhao, Zh.-X. Zhang, Z.-W. Ma, H.-G. Duan, X.-S. Guo, and E.-Q. Xie,Chinese Phys. Lett., 25, No. 10: 3787 (2008).
6. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl.Specrosc., 84, No. 1: 46 (2017).
7. P. Wellenius, A. Suresh, J. V. Foreman, H. O. Everitt, and J. F. Muth, Ma-ter. Sci. Eng. B, 146, Nos. 1–3: 252 (2008).
8. T. Minami, T. Shirai, T. Nakatani, and T. Miyata, Jpn. J. Appl. Phys., 39,No. 6A: L524 (2000).
9. E. V. Berlin and L. A. Seydman, Ionno-Plazmennyie Protsessy vTonkoplenochnoy Tekhnologii [Ion-Plasma Processes in Thin-Film Technolo-gy] (Moscow: Tekhnosfera: 2010) (in Russian).
10. O. M. Bordun, I. Yo. Kukharskyy, B. O. Bordun, and V. B. Lushchanets,J. Appl. Spectrosc., 81, No. 5: 771 (2014).
11. C. V. Thompson, Sol. State Phys., 55: 270 (2001).
12. C. V. Thompson, J. Appl. Phys., 58: 763 (1985).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement