vol. 18 / 

Issue 4


Download the full version of the article (in PDF format)

A. M. Lohvynov, I. V. Cheshko, S. I. Protsenko
«Structural and Phase State and Magnetoresistive Properties of Spin-Valve Structures Based on Co and Ru»
0953–0960 (2020)

PACS numbers: 68.37.Ps, 68.55.Nq, 73.50.Jt, 73.61.At, 75.47.Np, 85.70.Kh, 85.75.-d

The features of phase composition and magnetoresistive properties of three-layer film systems based on Co and Ru within the thickness range of 540 nm, which condensed at 300°K and annealed at 600°K, are revealed. As shown, the Ru films with an effective thickness of less than 15 nm obtained on glass-ceramic substrates heated at 500°K are not structurally continuous. In the case of a Co buffer layer, the Ru films are structurally continuous over thicknesses exceeding 5 nm. Optimal conditions for the formation of functional synthetic antiferromagnetic (SAF) layers based on Ru and Co for metal spin-valves with unchanged crystalline structure and magnetoresistive properties are proposed. The most effective in terms of magnetoresistive properties are three-layer Co/Ru/Co/S structures with a thickness of Co layers d\(_{Co}\)=20 nm and a thickness of the Ru interlayer d\(_{Ru}\)=520 nm under subsequent annealing to 600°K.

Keywords: thin film, phase composition, spin-valve structure, magnetoresistance, coercive force
1. P. H. Chan, X. L. Philip, and W. T. Pong, Vacuum, 140: 111 (2017);
2. X. Li, C. W. Leung, C.-C. Chiu, K.-W. Lin, M. Chan, Y. Zhou, and Philip W. T. Pong, Applied Surface Science, 410: 479 (2017);
3. C. Y. You, J. Yoon, S.-Y. Park, S. Yuasa, and M.-H. Jung, Current Applied Physics, 11: e92 (2011);
4. P. Pirro, A. Hamadeh, M. Lavanant-Jambert, T. Meyer, B. Tao, E. Rosario, Y. Lu, M. Hehn, S. Mangin, and S. P. Watelot, Journal of Magnetism and Magnetic Materials, 432: 260 (2017);
5. X. Zhang, H. Deng, S. Xiao, Z. Zhang, J. Tang, L. Deng, and W. Hu, Journal of Alloys and Compounds, 588: 163 (2014);
6. H. J. Jung, J. H. Han, E. A. Jung, B. K. Park, J.-H. Hwang, S. U. Son, C. G. Kim, and T. Chung, Chemistry of Materials, 26: 7083 (2014);
7. S. Yeo, S. Choi, J. Park, S.-H. Kim, T. Cheon, B. Lim, and S. Kim, Thin Solid Films, 546: 2 (2013);
8. Y. W. Song, V. Yu. Vasilyev, and K. P. Mogilnikov, Current Applied Physics, 9: e148 (2009);
9. T. Nagano, K. Inokuchi, K. Tamahashi, N. Ishikawa, Y. Sasajima, and J. Onuki, Thin Solid Films, 520: 374 (2011);
10. Y. Nakamura and U. Mizutani, Materials Science and Engineering A, 181: 790 (1994).
11. S. C. Chen, S. U. Jen, R. Z. Chen, C. F. Lu, C. M. Wang, P. C. Kuo, J. Magn. Magnet. Mat., 459: 106 (2018).
12. A. M. Lohvynov, I. V. Cheshko, M. V. Kostenko, and S. I. Protsenko, Proceedings of the 6th International Conference Nanomaterials: Application & PropertiesNAP-2016 (1419 September 2016, Lviv, Ukraine), vol. 5, Pt. 1, p. 129; DOI: 10.1109/NAP.2016.7757255
13. A. . , - : (: : 1965).
14. V. K. Portnoi, A. V. Leonov, A. N. Streletskii, and A. I. Logacheva, The Physics of Metals and Metallography, 115, No. 3: 277 (2014);
15. S. Zsurzsa, L. Peter, L. F. Kiss, and L. Bakonyi, J. Magn. Magnet. Mat., 421: 194 (2017).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement