Issues

 / 

2020

 / 

vol. 18 / 

Issue 3

 



Download the full version of the article (in PDF format)

T. Tkachenko, V. Yevdokymenko, D. Kamenskyh, V. Povazhny, M. Filonenko, V. Kremenetskii, V. Vakhrin, V. Kashkovsky
«Influence of SiC Production Temperature on Its Physicochemical Characteristics»
669–679 (2020)

PACS numbers: 61.05.cp, 61.43.Gt, 68.37.Hk, 68.70.+w, 78.30.-j, 81.07.Wx, 82.80.Pv

Silicon carbide, due to unique physicochemical properties (thermal and chemical stability, oxidation and corrosion resistance, high hardness, resistance to radiation damage), is used to produce oxygen-free ceramics, semiconductors, Schottky diodes, UV sensors, covering of the spaceship hull, and for the fusion reactor wall. Dependent on the way and obtaining condition, some properties of the silicon carbide are changed. In this paper, SiC with morphologies of both particles and whiskers is grown by a direct carbothermal reduction for a shorter holding time of 1 h at 1400–1900\(^{\circ}\)C. Effects of process conditions on the phase composition and morphology of the samples are investigated using XRF, XRD, FTIR–ATR and SEM–EDS, respectively. The XRD results show that the final product is identified as \(\beta\)-SiC having lattice parameter a=4.3365–4.3575 Å that is in close agreement with the reported value of 4.3589 Å. The thickness of the SiC whiskers is increased with the growth of temperature. The results obtained also show that the characteristics of the synthesised SiC particles strongly depend on the heat-treatment conditions.

Keywords: silicon carbide, carbothermal reduction, silicon dioxide, whiskers, heat treatment conditions

https://doi.org/10.15407/nnn.18.03.669
References
1. Y. P. Simonenko, Novyye Podkhody k Sintezu Tugoplavkikh Nanokristallich-eskikh Karbidov i Oksidov i Polucheniyu Ul'travysokotemperaturnykh Keram-icheskikh Materialov na Osnove Diborida Gafniya [New Approaches tothe Synthesis of Refining Nanocrystalline Carbides and Oxides and Productionof Ultra-Temperature Ceramic Materials Based on Hafnium Diboride] (Disser.for Dr. Chem. Sci.) (Moscow: N. S. Kurnakov Institute of General and InorganicChemistry, R.A.S.: 2016) (in Russian).
2. V. A. Karelin, A. N. Strashko, A. V. Sazonov, and A. V. Dubrovin, Resource-Efficient Technologies, 2: 50 (2016); https://doi.org/10.1016/j.reffit.2016.06.002.
3. M. Usman, Impact of Ionizing Radiation on 4H-SiC Devices (Dr. Thesis forTeknologie Dr.) (Stockholm: Microelectronics and Applied Physics Schoolof Information and Communication Technology (ICT) KTH Royal Institute ofTechnology: 2012).
4. J. Fan and P. K. Chu, Silicon Carbide Nanostructures (Switzerland: SpringerInternational Publishing: 2014); https://doi.org/10.1007/978-3-319-08726-9_2.
5. M. Neumann, R. Noske, A. Taubert, B. Tierscha, and P. Strauch, J. Mater.Chem., 22: 9046 (2012); https://doi.org/10.1039/C2JM30253E.
6. Í. Yàn, Â. Wang, Õ. Ì. Song, L. W. Òàn, S. J. Zhang, G. H. Chen, S. P. Wong,R. W. M. Kwok, and W. M. L. Låî, Diam. Relat. Mater., 9: 1795 (2000); https://doi.org/10.1016/S0925-9635(00)00308-3.
7. O. A. Ageyev, A. Ye. Belyayev, N. S. Boltovets, B. C. Kiselev, R. V. Konakova,A. A. Lebedev, V. V. Milenin, O. B. Okhrimenko, V. V. Polyakov,A. M. Svetlichnyy, and D. I. Cherednichenko, Karbid Kremniya: Tekhnologii,Svoystva, Primenenie (Kharkov: ISMA: 2010) (in Russian).
8. L. G. Ceballos-Mendivil, R. E. Cabanillas-Lopez, J. C. Tanori-Cordova,R. Murrieta-Yescas, P. Zavala-Rivera, and J. H. Castorena Gonzalez, EnergyProcedia, 57: 533 (2014); https://doi.org/10.1016/j.egypro.2014.10.207.
9. M. K. Trivedi, G. Nayak, R.M . Tallapragada, S. Patil, O. Latiyal, and S. Jana,J. Powder Metall. Min., 4: 1 (2015); http://dx.doi.org/10.4172/2168-9806.1000132.
10. Voo Chung Sung Tony, Chun Hong Voon, Chang Chuan Lee, Bee Ying Lim,Subash Chandra Bose Gopinath, Kai Loong Foo, Mohd Khairuddin MohdArshad, Abdul Rahim Ruslinda, Uda Hashim, Mohd Nordin Nashaain, andYarub Al-Douri, Materials Research., 20: 6 (2017); http://dx.doi.org/10.1590/1980-5373-MR-2017-0277.
11. S. L. Shikunov and V. N. Kurlov, Technical Physics, 62: 12 (2017); http://dx.doi.org/10.1134/S1063784217120222.
12. T. Aichingera, G. Rescherb, and G. Pobegen, Microelectronics Reliability, 80:68 (2018); https://doi.org/10.1016/j.microrel.2017.11.020.
13. V. A. Yevdokymenko, D. S. Kamenskyh, V. I. Kashkovsky, and V. V. Vakhrin,Method of Producing Amorphous Silicon Dioxide from the Rice Husk (Patent117881 UA. ÌKI B01J 19/24 C01B 33/00 C01B 33/023 (Bul. No. 18) (2018))(in Ukrainian).
14. Thanh Nhan Tran, Thi Van Anh Pham, My Loan Phung Le, Thi Phuong ThoaNguyen, and Van Man Tran, Adv. Nat. Sci.: Nanosci. Nanotechnol., 4: 1 (2013);INFLUENCE OF SiC PRODUCTION TEMPERATURE ON ITS CHARACTERISTICS 679 https://doi.org/10.1088/2043-6262/4/4/045007.
15. Yo. Li, Ch. Chen, Ji.-T. Li, Yu. Yang, and Zh.-M. Lin, Nanoscale Res. Lett., 6:454 (2011); https://doi.org/10.1186/1556-276X-6-454.
16. Ye Hua, Shuxin Bai, Hong Wan, Xingyu Chen, Ting Hu, and Jinyu Gong,J. Mater Sci., 54: 2016 (2019); https://doi.org/10.1007/s10853-018-3016-7.
17. Yangn Xiang, Luming Huang, and Zhaohui Chen, Ceram. Int., 40: 10303(2014); https://doi.org/10.1016/j.ceramint.2014.03.001.
18. T. S. Kvashina, Yu. L. Krutskii, N. Yu. Cherkasova, R. I. Kuzmin,A. G. Tyurin, Doklady Akademii Nauk Vysshei Shkoly Rossiiskoi Federatsii—Proceedings of the Russian Higher School Academy of Sciences, No. 4 (37): 80(2017) (in Russian); https://doi.org/10.17212/1727-2769-2017-4-80-90.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement