Issues

 / 

2019

 / 

vol. 17 / 

Issue 4

 



Download the full version of the article (in PDF format)

E. A. Lysenkov
«Simulation of Thermal Conductivity of Polymer Nanocomposites, Using Models Based on Thermal-Electrical Analogy»
761–772 (2019)

PACS numbers: 61.41.+e, 64.60.ah, 65.80.+n, 66.70.Hk, 66.70.Lm, 82.35.Lr, 82.35.Np

Some theoretical models of thermal conductivity of the polymeric nanocomposites based on thermoelectric analogy are proposed, and their accordance with experimental results are analysed for the polymer–carbon nanotubes (CNT) systems. The specificity of thermal conductivity of the polymer–CNT systems chosen for modelling is in the presence of a percolation transition, which is not taken into account by majority of thermal-conductivity models. Therefore, using the thermoelectric analogy, we used models that well describe the percolation behaviour of the electrical conductivity of polymer–CNT systems, namely the Bruggeman’s model, the Fourier model, and the scaling model, and applied these models to describe the thermal conductivity. As established, a model based on the theory of effective medium (the Bruggeman’s model) does not take into account the existence of a percolation threshold at low CNT content and cannot be used for accurate description of experimental data. As discovered, the Fourier model demonstrates a good accordance with an experiment, however, it is applicable only for the systems, in which a large increase of thermal conductivity under reaching the percolation threshold is observed; these are systems with low own conductivity. As shown, the best accordance with experimental data is demonstrated within the scaling model that, besides the percolation threshold, takes into account the structural characteristics of clusters, which are formed by carbon nanotubes.

Keywords: percolation behaviour, polymer nanocomposites, thermal conductivity, carbon nanotubes, thermal-electrical analogy

https://doi.org/10.15407/nnn.17.04.761

References
1. L. Rodriguez-Tembleque, E. Garcia-Macias, and A. Saez, Composites Part B: Engineering, 154: 114 (2018); https://doi.org/10.1016/j.compositesb.2018.08.003.
2. R. K. Prusty, D. K. Rathore, and B. C. Ray, Advances in Colloid and Interface Science, 240: 77 (2017); https://doi.org/10.1016/j.cis.2016.12.008.
3. M. Brailo, A. Buketov, S. Yakushchenko et al., Materials Performance and Characterization, 7, No. 1: 275 (2018); https://doi.org/10.1520/MPC20170161.
4. H. Tanabi and M. Erdal, Results in Physics, 12: 486 (2019); https://doi.org/10.1016/j.rinp.2018.11.081.
5. À. V. Buketov, Î. Î. Sapronov, Ì. V. Brailo et al., Materials Science, 49, No. 5: 696 (2014); https://doi.org/10.1007/s11003-014-9664-0.
6. S. Y. Kwon, I. M. Kwon, Y.-G. Kim et al., Carbon, 55: 285 (2013); https://doi.org/10.1016/j.carbon.2012.12.063.
7. Z. Han and A. Fina, Progress in Polymer Science, 36: 914 (2011); https://doi.org/10.1016/j.progpolymsci.2010.11.004.
8. P. C. Ma, B. Z. Tang, and J.-K. Kim, Carbon, 46: 1497 (2008); https://doi.org/10.1016/j.carbon.2008.06.048.
9. K. Sun, Z. D. Zhang, L. Qian et al., Appl. Phys. Lett., 108: 061903 (2016); https://doi.org/10.1063/1.4941758.
10. R. Vargas-Bernal, G. Herrera-Perez, M. E. Calixto-Olalde, and M. TecpoyotlTorres, J. Electric. and Comput. Engin., 2013: 179538 (2013); http://dx.doi.org/10.1155/2013/179538.
11. X. T. Cheng and X. G. Liang, Intern. J. Heat and Mass Transfer, 131: 709 (2019); https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.111.
12. K. Pietrak and T. S. Wisniewski, J. of Power Technol., 95, No. 1: 14 (2015); http://papers.itc.pw.edu.pl/index.php/JPT/article/view/463.
13. M.-X. Shen, Y.-X. Cui, J. He et al., International Journal of Minerals, Metallurgy and Materials, 18, No. 5: 623 (2011); https://doi.org/10.1007/s12613-011-0487-9.
14. E. A. Lysenkov and V. V. Klepko, J. of Nano- Electron. Phys., 8, No. 1: 01017 (2016); https://doi.org/10.21272/jnep.8(1).01017.
15. R. Taherian, M. J. Hadianfard, and A. N. Golikand, J. Appl. Polym. Sci., July: 1497 (2012); https://doi.org/10.1002/APP.38295.
16. D. A. G. Bruggeman, Ann. Phys., 24: 636 (1935); https://doi.org/10.1002/andp.19354160705.
17. A. A. Snarskii, Phys. Usp., 50: 1239 (2007); https://doi.org/10.1070/PU2007v050n12ABEH006348.
18. J. R. Chu, X. H. Zhang, and C. X. Xu, Polym. Mater. Sci. Eng., 4: 17 (2000); http://en.cnki.com.cn/Article_en/CJFDTotal-GFZC200004004.htm.
19. Q. Xue, Physica B, 325: 195 (2003); https://doi.org/10.1016/S09214526(02)01523-5.
20. Y. Q. Ma and Z. Y. Li, Acta Phys. Sinica, 39: 458 (1990); http://wulixb.iphy.ac.cn/CN/Y1990/V39/I3/457.
21. J. Fourier, G. Boiteax, G. Seytre et al., Synth. Met., 84: 839 (1997); https://doi.org/10.1016/S0379-6779(96)04173-2. 22. R. Taherian, ECS J. of Solid State Sci. and Tech., 3, No. 6: M26 (2014); https://doi.org/10.1149/2.023406jss.
23. S. Kirkpatrick, Phys. Rev. Lett., 27: 1722 (1971); https://doi.org/10.1103/PhysRevLett.27.1722.
24. A. L. Efros and B. I. Shklovskii, physica status solidi (b), 76, No. 2: 475 (1976); https://doi.org/10.1002/pssb.2220760205.
25. Å. A. Lysenkov and V. V. Klepko, J. of Engin. Phys. and Thermophys., 88, No. 4: 1008 (2015); https://doi.org/10.1007/s10891-015-1278-3.
26. E. A. Lysenkov, Z. O. Gagolkina, E. V. Lobko et al., Funct. Mater., 22, No. 3: 342 (2015); http://dx.doi.org/10.15407/fm22.03.342.
27. R. V. Dinzhos, N. M. Fialko, and E. A. Lysenkov, J. of Nano- Electron. Phys., 6, No. 1: 01015 (2014); https://jnep.sumdu.edu.ua/uk/component/search/index.php?option=com_co ntent&task=full_article&id=1185.
28. D. D. L. Chung, Appl. Therm. Eng., 21: 1593 (2001); https://doi.org/10.1016/S1359-4311(01)00042-4.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement