Issues

 / 

2019

 / 

vol. 17 / 

Issue 4

 



Download the full version of the article (in PDF format)

E. I. Get'man, S. V. Radio
«Predicting the Substitution of Rare-Earth Elements with Cerium in the Solid Solutions Based on Nanoscale Ln\(_2\)SiO\(_5\) (Ln=Tb–Lu, Y)»
701–710 (2019)

PACS numbers: 61.68.+n, 64.75.Jk, 64.75.Nx, 65.40.G-, 82.33.Pt, 82.60.Lf

Mixing energies (17.2–44.9 kJ/mole), critical temperatures of decomposition (1029–2700 K), and decomposition temperatures for systems of nanoscale REE oxyorthosilicates Ln\(_{1-x}\)[(SiO\(_4)_{0.5}\)O\(_{0.5}\)]:Ce\(_x\) (Ln=Tb-Lu, Y) for compositions with \(\textit{x}\)=0.01, 0.02, 0.05, 0.10, and 0.20, which have luminescent properties, are calculated by means of the crystal-chemical method within the regular-solution approximation. A diagram is presented, which allows to determine decomposition temperature with a given equilibrium substitutional limit (\(\textit{x}\)) or substitutional limit with a given temperature as well as to assess areas of stability, instability, and metastability of solid solutions.

Keywords: solid solution, energy of mixing, isomorphous substitution, oxyorthosilicate of rare-earth elements, cerium

https://doi.org/10.15407/nnn.17.04.701

References
1. J. Wang, S. Tian, G. Li, F. Liao, and X. Jing, Mater. Res. Bull., 36, No. 10: 1855 (2001); https://doi.org/10.1016/S0025-5408(01)00664-X.
2. Y. Liu, C. N. Xu, K. Nonaka, and H. Tateyama, J. Mater. Sci., 36, No. 18: 4361 (2001); https://doi.org/10.1023/A:1017953913334.
3. C. Michail, S. David, P. Liaparinos, I. Valais, D. Nikolopoulos, N. Kalivas, A. Toutountzis, D. Cavouras, I. Kandarakis, and G. Panayiotakis, Nucl. Instrum. Methods Phys. Res. Sect. A, 580, No. 1: 558 (2007); https://doi.org/10.1016/j.nima.2007.05.234.
4. C. M. Michail, G. P. Fountos, S. L. David, I. G. Valais, A. E. Toutountzis, N. E. Kalyvas, I. S. Kandarakis, and G. S. Panayiotakis, Meas. Sci. Technol., 20, No. 10: 104008 (2009); https://doi.org/10.1088/09570233/20/10/104008.
5. E. Bescher, S. R. Robson, J. D. Mackenzie, B. Patt, J. Iwanczyk, and E. J. Hoffman, J. Sol–Gel Sci. Techn., 19, Nos. 1–3: 325 (2000); https://doi.org/10.1023/A:1008785616233.
6. V. P. Barzakovsky, A. I. Boykova, N. N. Kurtseva, V. V. Lapin, and N. A. Toropov, Diagrammy Sostoyaniya Silikatnykh Sistem: Spravochnik. Vypusk Tretiy. Troynyye Silikatnyye Sistemy [State Diagrams of Silicate Systems: Handbook. Issue 3. Ternary Silicate Systems] (Leningrad: Nauka: 1972) (in Russian).
7. G. B. Loutts, A. I. Zagumennyi, S. V. Lavrishchev, Yu. Zavartsev, and P. A. Studenikin, J. Cryst. Growth, 174, Nos. 1–4: 331 (1997); https://doi.org/10.1016/S0022-0248(96)01171-2.
8. M. W. Blair, L. G. Jacobsohn, B. L. Bennett, R. E. Muenchausen, S. C. Sitarz, J. F. Smith, D. Wayne Cooke, P. A. Crozier, and R. Wang, Symposium HH— Nanophase and Nanocomposite Materials V, 1056: 1056-HH07-06 (2007); https://doi.org/10.1557/PROC-1056-HH07-06.
9. J. Wang, S. Tian, G. Li, F. Liao, and X. Jing, J. Electrochem. Soc., 148, No. 6: H61 (2001); DOI: 10.1149/1.1369376. 10. V. S. Urusov, Fortschr. Mineral., 52: 141 (1975).
11. V. S. Urusov, Teoriya Izomorfnoi Smesimosti [The Theory of Isomorphous Miscibility] (Ìoscow: Nauka: 1977) (in Russian).
12. V. S. Urusov, V. L. Tauson, and V. V. Akimov, Geokhimiya Tverdogo Tela [Geochemistry of Solid State] (Moscow: GEOS: 1997) (in Russian).
13. R. Becker, Z. Metallkd., 29: 245 (1937).
14. K. Li and D. Xue, J. Phys. Chem. A, 110, No. 39: 11332 (2006); https://doi.org/10.1021/jp062886k.
15. S. S. Batsanov, Russ. Chem. Rev., 37, No. 5: 332 (1968); https://doi.org/10.1070/RC1968v037n05ABEH001639.
16. J. Felsche, Rare Earths. Structure and Bonding. Vol. 13. The Crystal Chemistry of the Rare-Earth Silicates (Berlin–Heidelberg: Springer: 1973); https://doi.org/10.1007/3-540-06125-8_3.
17. R. Hoppe, Adv. Fluor. Chem., 6: 387 (1970).
18. E. I. Get’man and S. V. Radio, Inorg. Mater., 53, No. 7: 718 (2017); https://doi.org/10.1134/S0020168517070044.
19. E. I. Get’man, S. V. Radio, L. B. Ignatova, and L. I. Ardanova, Russ. J. Inorg. Chem., 64, No. 1: 118 (2019); https://doi.org/10.1134/S0036023619010091.
20. E. G. Yukihara, L. G. Jacobsohn, M. W. Blair, B. L. Bennett, S. C. Tornga, and R. E. Muenchausen, J. Lumin., 130, No. 12: 2309 (2010); https://doi.org/10.1016/j.jlumin.2010.07.010.
21. R. E. Muenchausen, E. A. McKigney, L. G. Jacobsohn, M. W. Blair, B. L. Bennett, and D. Wayne Cooke, IEEE Trans. Nuclear Sci., 55, No. 3: 1532 (2008); https://ieeexplore.ieee.org/document/4545173.
22. E. I. Get’man, S. V. Radio, and L. I. Ardanova, Determining Phase Stability of Luminescent Materials Based on Solid Solutions of Oxyorthosilicates (Lu1 xLnx)[(SiO4)0.5O0.5], where Ln La–Yb (in press).
23. L. Fan, M. Jiang, D. Lin, D. Zhou, Y. Shi, Y. Wu, H. Yao, F. Xu, J. Xie, F. Lei, L. Zhang, and J. Zhang, J. Alloy. Compd., 720: 161 (2017); https://doi.org/10.1016/j.jallcom.2017.05.248.
24. J. Xie, F. Zhang, S. Shen, D. Lin, L. Fan, L. Zhang, F. Lei, Y. Shi, and P. Liu, Proc. SPIE 9796. Selected Papers of the Photoelectronic Technology Committee Conferences held November 2015 (Various, China) (26 January 2016), p. 97960T; https://doi.org/10.1117/12.2228576.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement