vol. 17 / 

Issue 3


Download the full version of the article (in PDF format)

I. V. Plyushchay, T. V. Gorkavenko, T. L. Tsaregradsíka, O. I. Plyushchay
«Ab initio Modelling of the Electronic and Elastic Properties of Imperfect Silicon»
529–542 (2019)

PACS numbers: 61.72.J-, 61.72.U-,, 71.15.Mb, 71.20.Mq, 71.55.Cn, 75.50.Pp

The first-principle calculation of the atomic and electronic structures as well as elastic properties of supercell composed of 64 Si atoms with its intrinsic point defects, the main impurity atoms (O, C) and dopants (N, B, P, As, Al, In) is presented. The density functional theory with the general gradient correction using the software package ABINIT is used for numerical calculation. Displacements of silicon atoms around the examined point defects up to 9th coordination sphere inclusive are analysed. The peculiarities of changes in both the equilibrium volume and the bulk modulus of supercell composed of 64 Si atoms and with various point defects are calculated and analysed. As shown, the structure deformation due to point defects leads to a decrease in the overall compression modulus for all the studied cases except interstitial oxygen. Electron spectra of silicon with various point defects are presented and analysed. As shown, the presence of intrinsic point defects as well as oxygen and carbon in silicon leads to the appearance of narrow impurity peaks in the vicinity of the Fermi level that can lead to the formation of magnetic moments on impurity atoms in the case of interstitial oxygen.

Keywords: silicon, point defects, atomic structure, electronic structure, bulk modulus

1. J. Slotte, M. Rummukainen, and F. Tuomisto, Phys. Rev. B, 78: 085202 (2008).
2. L. A. Marqu s, L. Pelaz, I. Santos, P. L pez, and M. Aboy, Phys. Rev. B, 78: 193201 (2008); DOI: 10.1103/PhysRevB.78.193201.
3. S. J. Clark and G. J. Ackland, Phys. Rev. B, 48: 10899 (1993).
4. C. L. Allred, X. Yuan, M. Z. Bazant, and L. W. Hobbs, Phys. Rev. B, 70: 134113 (2004).
5. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996).
6. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. C t , T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, and J. W. Zwanziger, Computer Phys. Comm., 180, Iss. 12: 2582 (2009); DOI: 10.1016/j.cpc.2009.07.007.
7. I. V. Plyushchay, T. L. Tsaregrads ka, O. O. Kalenyk, and O. I. Plyushchay, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1233 (2016) (in Ukrainian).
8. M. A. Hopcroft, W. D. Nix, and T. W. Kenny, J. of Microelectromechanical Systems, 19: 229 (2010).
9. T. V. Gorkavenko, I. V. Plyushchay, O. I. Plyushchay, and V. A. Makara, Journal of Nano- and Electronic Physics, 9: 04025 (2017).
10. T. V. Gorkavenko, I. V. Plyushchay, O. I. Plyushchay, and V. A. Makara, Journal of Nano- and Electronic Physics, 10: 04030 (2018).
11. Semiconductors and Semimetals (Eds. R. K. Willardson, E. R. Weber, and A. C. Beer). Vol. 42. Oxygen in Silicon (Ed. F. Shimura) (Academic Press: 1994).
12. T. L. Makarova, Fizika i Tekhnika Poluprovodnikov, 38, No. 6: 641 (2004) (in Russian).
13. Ru-Fen Liu and Ching Cheng, Phys. Rev. B, 76: 014405 (2007).
14. P. Pyykk , S. Riedel, and M. Patzschke, Chemistry, 11: 3511 (2005).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© I. V. Plyushchay, T. V. Gorkavenko, T. L. Tsaregradsíka, O. I. Plyushchay, 2019

E-mail: Phones and address of the editorial office About the collection User agreement