vol. 17 / 

Issue 3


Download the full version of the article (in PDF format)

N. Jalagonia, A. Hrubiak, T. Kuchukhidze, L. Kalatozishvili, E. Sanaia, G. Bokuchava, I. Petrova-Doycheva, V. Moklyak
«Obtaining of Nanocomposites Based on Comb-Type Siloxane and Reduced Graphene Oxide»
465–472 (2019)

PACS numbers: 42.70.Jk, 62.23.Pq, 78.30.Jw, 81.07.Pr, 81.70.Pg, 82.35.Np, 82.56.Ub

Comb-type siloxane belongs to graft polymers with high density in segments of main backbone, which have considerable attracted interest of researchers due to unique architecture. Hydrosilylation reactions are used for synthesis of graft polymers. The aim of presented work is obtaining of photopolymers based on polydimethylsiloxane (PDMS). For this purpose, we have conducted hydrosilylation reaction of polymethylhydrosiloxane (PMHS) with allyl acrylate and vinyltriethoxysilane in the presence of Karstedt's catalyst in toluene. Nanocomposites are fabricated based on PDMS and reduced graphene oxide with different content in the range of 0.5–0.8 wt.%. Materials’ structure and composition are characterized by FTIR, NMR, TGA, DMTA, Raman, and SEM analyses in order to determine the structure, morphology, filler dispersion, defects and other characteristics.

Keywords: comb-type siloxane, hydrosilylation, nanocomposite, 3D printer

1. J. E. Mark, Macromolecules, 11, No. 4: 627 (1978).
2. I. Yilgor and J. E. McGrath, Polysiloxane Copolymers/Anionic Polymerization. In: Advances in Polymer Science (Berlin–Heidelberg: Springer-Verlag: 1988).
3. C. Eaborn, Organische Verbindingen. In: Organosilicon Compounds (London: Butterworth Scientific Publications: 1960).
4. E. G. Rochow and W. F. Gilliam, J. Am. Chem. Soc., 67, No. 6: 1772 (1945).
5. R. G. Jones, W. Ando, and J. Chojnowski, Silicon-Containing Polymers. In: The Science and Technology of Their Synthesis and Applications (Dordrecht: KluwerAcademic Publishers: 2000).
6. B. Thavornyutikarn, R. Nonthabenjawan, P. Ngamdee, and W. Janvikul, Journal of Metals, Materials and Minerals, 18, No. 2: 213 (2008).
7. Y. Karatas, N. Kaskhedikar, M. Burjanadze, and H.-D. Wiemh fer, Macromol. Chem. Phys, 207, No. 4: 419 (2006).
8. S. Stankovich, D. A. Dikin, R. D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R. S. Ruoff, Carbon, 45, No. 2: 1558 (2007).
9. J. Du and H. M. Cheng, Macromolecular Chemistry and Physics, 213, Nos. 10–11: 1060 (2012).
10. S. X. Zhou, Y. Zhu, H. D. Du, B. H. Li, and F. Y. Kang, New Carbon Mater., 27, No. 4: 241 (2012).
11. N. Jalagonia, I. Esartia, T. Tatrishvili, E. Markarashvili, J. Aneli, and O. Mukbaniani, Oxid. Commun., 39, No. 2: 1282 (2016).
12. O. Mukbaniani, J. Aneli, I. Esartia, T. Tatrishvili, E. Markarashvili, and N. Jalagonia, Macromolecular Symposia, 328, No. 1: 25 (2013).
13. N. Jalagonia, T. Kuchukhidze, E. Sanaia, L. Kalatozishvili, R. Ivanova, B. Khvitia, and G. Bokuchava, Bulletin of the Georgian National Academy of Science, 12, No. 4: 72 (2018).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© N. Jalagonia, A. Hrubiak, T. Kuchukhidze, L. Kalatozishvili, E. Sanaia, G. Bokuchava, I. Petrova-Doycheva, V. Moklyak, 2019

E-mail: Phones and address of the editorial office About the collection User agreement