vol. 17 / 

Issue 3


Download the full version of the article (in PDF format)

L. I. Karbivska, S. S. Smolyak, V. L. Karbivskyy, D. . Savchenko, . O. Romansky, . . Pashchenko, P. O. selk
«Nanocomposite Based on Calcium Hydroxyapatite and Ultrafine Graphite»
0453–0464 (2019)

PACS numbers: 68.37.Hk, 72.80.Tm, 81.05.uf, 81.07.Bc, 82.80.Pv, 87.85.jj

Composites based on both nanodispersed calcium hydroxyapatite and ultrafine graphite are synthesized for the first time. The morphological features and electronic structure of the complexes are investigated. As revealed, the modification of a composite based on nanodispersed apatite, ultrafine graphite, cellulose fibres by means of the epoxy oligomer with a hardener has a significant effect on the complex properties of the material obtained, in particular, leads to the appearance of electrical conductivity of the sample. Two types of samples are obtained: I) composite of Ca10(PO4)6(OH)2?? graphite???cellulose fibres; II) composite of Ca10(PO4)6(OH)2???graphite???cellulose fibres???epoxy oligomer. Electron scanning microscopy and x-ray photoelectron spectroscopy are used to study the structural features and electronic structure of the samples. Composite I is a connection, in which there are conductive and non-conductive components. Modification of the composite by means of the epoxy oligomer with a hardener leads to the appearance of electrical conductivity in the material. As shown, the addition of an epoxy oligomer makes minor change in the morphological parameters of the sample at the nanolevel. For composite II, an increase in the relative share of C=O bonds in the total balance of carbon bonds is observed. The resulting composites have a high thermal stability inherent in hydroxyapatite and may be promising for use in a wide range of applications.

Keywords: composite, nanodispersed hydroxyapatite, ultrafine graphite, epoxy oligomer, current-conducting ceramics

1. F.-F. Chen, Y.-J. Zhu, Z.-C. Xiong, L.-Y. Dong, F. Chen, B.-Q. Lu, and R.-L. Yang, ACS Applied Materials & Interfaces, 9, No. 45: 39534 (2017).
2. I. Tabiai, K. Chizari, V. Hughes, and T. Daniel, Technical Report, Report number: 11.2 (Montr al: cole Polytechnique Montr al).
3. A. Khosla and B. L. Gray, Materials Letters, 63: 1203 (2009).
4. A. Khosla, B. L. Gray, Macromol. Symp., 297: 210 (2010).
5. A. Khosla, The Electrochemical Society Interface, 21: 67 (2012).
6. A. Shahini, M. Yazdimamaghani, K. J. Walker, M. Eastman, H. Hatami-Marbini, B. Smith, J. L. Ricci, S. Madihally, D. Vashaee, and L. Tayebi, International Journal of Nanomedicine, 9: 167 (2014).
7. S. Constanda, M. S. Stan, C. S. Ciobanu, M. Motelica-Heino, R. Gu gan, K. Lafdi, A. Dinischiotu, and D. Predoi, Journal of Nanomaterials, 2016: 1 (2016).
8. R. Rajesh, H. Ayyamperumal, S. Natarajan, and D. Ravichandran, International Journal of Pharmacy and Pharmaceutical Sciences, 4, No. 4: 716 (2012).
9. A. A. White, S. M. Best, and I. A. Kinloch, International Journal of Applied Ceramic Technology, 4, No. 1: 1 (2007).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© L. I. Karbivska, S. S. Smolyak, V. L. Karbivskyy, D. . Savchenko, . O. Romansky, . . Pashchenko, P. O. selk, 2019

E-mail: Phones and address of the editorial office About the collection User agreement