Download the full version of the article (in PDF format)
N. V. Sych, S. I. Trofymenko, M. M. Tsyba, V. M. Vikarchuk, L. A. Kupchyk, M. F. Kovtun, A. Klunko
«Evaluation of the Effectiveness of Nanoporous Material Obtained by Activation of Coffee Sludge»
371–380 (2019)
PACS numbers: 61.43.Gt, 81.05.Rm, 81.05.U-, 81.07.Wx, 81.20.Wk, 83.50.Uv, 83.80.Fg
Samples of activated carbon are fabricated from powdered coffee sludge. The characteristics of porous structure of nanoporous material (with BET specific surface area of 835 m2/g, mesopores’ specific surface area of 230–300 m2/g, total pore volume of 0.5–0.6 cm3/g) are studied. Sorption properties of marker-substances are evaluated. The selectivity of samples with respect to heavy-metal ions is investigated that proves the expediency of use of such a material for the treatment of industrial effluents.
Key words: coffee sludge, physical activation, porous structure, surface area, sorption of heavy metals.
https://doi.org/10.15407/nnn.17.02.371
References
1. T. A. Kurniawan, G. Y. S. Chan, W.-H. Lo, and S. Babel, Sci. Total Environ., 366: 409 (2006). https://doi.org/10.1016/j.scitotenv.2005.10.001
2. M. Chiban, A. Soudani, F. Sinan, S. Tahrouch, and M. Persin, Clean - Soil, Air, Water, 39: 376 (2011). https://doi.org/10.1002/clen.201000127
3. Mohamed Sulyman, Jacek Namiesnik, and Andrzej Gierak, Polish Journal of Environmental Studies, 26: 479 (2017). https://doi.org/10.15244/pjoes/66769
4. M. Sabry Shaheen, I. Fawzy Eissa, Khaled Ghanem, M. Hala Gamal El-Din, and S. Al Anany Fathia, Journal of Environmental Management., 128: 514 (2013). https://doi.org/10.1016/j.jenvman.2013.05.061
5. N. V. Sych, S. I. Trofymenko, M. M. Tsyba, and V. M. Vikarchuk, Nanosistemi, Nanomateriali, Nanotehnologii, 16: 363 (2018) (in Russian).
6. A. M. Youssef, N. R. E. Radwan, I. Abdel-Gawad, and G. A. A. Singer, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252: 143 (2005). https://doi.org/10.1016/j.colsurfa.2004.09.008
7. C. J. Dur n-Valle, M. G mez-Corzo, J. Pastor-Villegas, and V. G mez-Serrano, Journal of Analytical and Applied Pyrolysis, 73: 59 (2005). https://doi.org/10.1016/j.jaap.2004.10.004
8. N. V. Sych, S. I. Trofymenko, O. I. Poddubnaya, M. M. Tsyba, V. I. Sapsay, D. O. Klymchuk, and A. M. Puziy, Appl. Surf. Sci., 261: 75 (2012). https://doi.org/10.1016/j.apsusc.2012.07.084
9. A. Namane, A. Mekarzia, K. Benrachedi, N. Belhaneche-Bensemra, and A. Hellal, Journal of Hazardous Materials, 119: 189 (2005). https://doi.org/10.1016/j.jhazmat.2004.12.006
10. V. Boonamnuayvitaya, S. Saeung, and W. Tanthapanichakoon, Separation and Purification Technology, 42: 159 (2005). https://doi.org/10.1016/j.seppur.2004.07.007
11. M. C. Baquero, L. Giraldo, J. C. Moreno, F. Su rez-Garc a, A. Mart nez-Alonso, and J. M. D. Tasc n, Journal of Analytical and Applied Pyrolysis, 70: 779 (2003).
12. Chung-Hsin Wu, Chao-Yin Kuo, and Shu-Shian Guan, Desalination and Water Treatment, 57: 5056 (2016). https://doi.org/10.1080/19443994.2014.1002009
13. George Z. Kyzas, Materials, 5: 1826 (2012). https://doi.org/10.3390/ma5101826
14. Ridha Lafi, Anouar ben Fradj, Amor Hafiane, and B. H. Hameed, Korean J. Chem. Eng, 31: 2198 (2014). https://doi.org/10.1007/s11814-014-0171-7
15. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquero, and T. Siemieniewska, Pure @ Appl Chem., 57: 603 (1985).
|