Issues

 / 

2019

 / 

vol. 17 / 

Issue 2

 



Download the full version of the article (in PDF format)

L. I. Karbovska, V. L. Karbivskyy, N. A. Kurgan, A. O. Romansky, O. Ya. Kuznetsova, A. P. Soroka
«Quantum Nature of Stability Mechanisms of Calcium Apatite Structure»
321–341 (2019)

PACS numbers: 07.85.Nc, 79.60.Jv, 81.05.Zx, 82.75.Fq, 82.80.Pv, 87.64.-t, 87.85.Qr

The role of the nascent d-shell of calcium in the formation of the anomalous features of calcium apatite depending on the composition, synthesis conditions, changes in dimensionality and topology of key elements is investigated. A detailed analysis of the electronic structure of calcium apatite is performed with spectral and theoretical methods. The limitations of the application of quantum-mechanical calculations using the methods of the density functional theory to the description of the long-range component of the interaction of calcium with the surroundings are established. In turn, experimental data indicate that the stability of the structure of apatite is determined largely by the two-valley effective potential of calcium d-electrons. In various calcium compounds, atomic effects play a significant role in forming the shape of the L?-spectra of calcium, and, as a result, the participation of d-states of calcium in bond formation is levelled by their significant localization, apparently, in the inner valley of the effective potential.


Key words: quantum mechanisms, calcium d-shell, apatite, electronic structure.

https://doi.org/10.15407/nnn.17.02.321

References
1. V. L. Karbovskiy and A. P. Shpak, Apatity i Apatitopodobnyye Soyedineniya. Elektronnoye Stroenie i Svoistva (Kyiv: Naukova Dumka: 2010) (in Russian).
2. A. P. Shpak, V. L. Karbovskiy, and V. V. Trachevskyy, Apatite (Kyiv: Akademperiodika: 2002) (in Russian).
3. T. Kanazawa, Neorganicheskie Fosfatnyye Materialy (Kyiv: Naukova Dumka: 1998) (in Russian).
4. K. Sato, Y. Suetsugu, J. Tanaka, S. Ina, and H. Monma, J. Col. Int. Sci., 224, No. 1: 23 (2000). https://doi.org/10.1006/jcis.1999.6623
5. J. Y. Kim, R. R. Fenton, B. A. Hunter, and B. J. Kennedy, Aust. J. Chem., 53, No. 8: 679 (2000). https://doi.org/10.1071/CH00060
6. P. A. Henning, M. Moustiakimov, and S. Lidin, J. Solid State Chem., 150, No. 1: 154 (2000). https://doi.org/10.1006/jssc.1999.8571
7. V. S. Sobolev, Fizika Apatita (Novosibirsk: Nauka: 1975) (in Russian).
8. R. Y. Karazyia, Uspekhi Fiz. Nauk, 135, No. 1: 79 (1981) (in Russian).
9. B. B. Kadomtsev and M. B. Kadomtsev, Uspekhi Fiz. Nauk, 166, No. 6: 651 (1996) (in Russian). https://doi.org/10.3367/UFNr.0166.199606d.0651
10. R. E. Ruus, A. A. Maiste, and Yu. A. Maksymov, Yzv. AN SSSR, 46, No. 4: 789 (1982) (in Russian).
11. F.-Ch. K hl, M. M ller, M. Schellhorn, K. Mann, S. Wieneke, and K. Eusterhues, J. Vac. Sci. Technol., A 34: 041302 (2016). https://doi.org/10.1116/1.4950599
12. J. Y. Peter Ko, X.-T. Zhou, F. Heigl, T. Regier, R. Blyth, and T.-K. Sham, AIP Conf. Proceed., 882: 538 (2007). https://doi.org/10.1063/1.2644585
13. J. Cosmidis, K. Benzerara, N. Nassif, T. Tyliszczak, and F. Bourdelle, Acta Biomaterialia, 12, No. 15: 260 (2015). https://doi.org/10.1016/j.actbio.2014.10.003
14. M. E. Fleet and X. Liu, Amer. Mineral., 94, Nos. 8–9: 1235 (2009). https://doi.org/10.2138/am.2009.3228
15. S. K. Lee, P. J. Eng, and Ho Mao, Rev. Mineral. Geochem., 78, No. 1: 139 (2014). https://doi.org/10.2138/rmg.2014.78.4
16. R. A. Metzler and P. Rez, J. Phys. Chem. B, 118, No. 24: 6758 (2014). https://doi.org/10.1021/jp503565e
17. P. S. Miedema, H. Ikeno, and F. M. de Groot, J. Phys. Condens. Matter., 23, No. 14: 145501 (2011). https://doi.org/10.1088/0953-8984/23/14/145501
18. S. J. Naftel, T. K. Sham, Y. M. Yiu, and B. W. Yates, J. Synchrotron Rad., No. 8: 255 (2001). https://doi.org/10.1107/S0909049500019555
19. D. L. Proffit, T. T. Fister, S. Kim, B. Pan, Ch. Liao, and J. T. Vaugheya, J. Electrochem. Soc., 163, No. 13: A2508 (2016). https://doi.org/10.1149/2.0121613jes
20. G. Geng, R. J. Myers, A. D. Kilcoyne, J. Ha, and P. J. M. Monteiro, Am. Min., 102: 900 (2017). https://doi.org/10.2138/am-2017-5670
21. J. Vinson and J. J. Rehr, Phys. Rev. B, 86: 195135 (2012). https://doi.org/10.1103/PhysRevB.86.195135
22. V. V. Nemoshkalenko, Vybrani Pratsi (Kyiv: Akademperiodyka: 2003), vol. 1: 89 (in Russian).
23. P. Wu, Y. Z. Zeng, and C. M. Wang, Biomaterials, 25: 1123 (2004). https://doi.org/10.1016/S0142-9612(03)00617-3
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement