Issues

 / 

2019

 / 

vol. 17 / 

Issue 2

 



Download the full version of the article (in PDF format)

D. L. Starokadomsky, N. V. Sigaryova, S. V. Shulga, L. M. Kokhtych, N. M. Moshkivska, A. A. Nikolaychuk, O. O. Tkachenko, M. M. Reshetnyk
«Effect of Oxidized Graphene on Mechanical Properties of Polyepoxy Composites and Their Resistance to Aggressive Medium»
311–320 (2019)

PACS numbers: 62.23.Pq, 68.37.Ps, 81.05.Zx, 81.07.Pr, 81.16.Pr, 81.70.Bt, 82.35.Np

Polymer composite materials on the base of an epoxy resin filled with graphene oxide with concentration of 0.5–5 mass.% are studied. The research is carried out for two types of composites obtained, depending on the exposure and method of obtaining. The first type of compositions is kept for 20–25 days (composites GÎ?), and the second one is kept about 6 hours (composites GÎ?). The nonmonotonic influence of filler on the mechanical parameters and chemical resistance of epoxy composites is revealed. As shown, the stability of composites in the acetone–ethyl acetate mixture and in the 25% solution of the nitric acid HNO3 depends on the method of obtaining the compositions (i.e., curing time before induration); composites GÎ? are more inert than composites GÎ?. This effect can be explained by the assumption of an optimal structure of composites GÎ?: the curled-twisted structure of GO in composites GÎ? should be less susceptible to the shale structure of composites GO?. These arguments allow us to talk about the promise of GO as an enhancement filler in the case of optimizing the technology of composite fabrication.


Key words: epoxy composite, oxidized graphene, chemical resistance, mechanical properties.

https://doi.org/10.15407/nnn.17.02.311

References
1. S. Shumilin, Nauka i Tekhnika, 5, No. 120: 4 (2016) (in Russian).
2. B. M. Gorelov, A. M. Gorb, O. I. Polovina, A. B. Nadtochiy, D. L. Starokadomskiy, S. V. Shulga, and V. M. Ogenko, Nanosistemi, Nanomateriali, Nanotehnologii, 14, No. 4: 527 (2016).
3. B. Qi, S. R. Lu, X. E. Xiao et al., Express Polymer Letters, 8, No. 7: 467 (2014).
4. Li Chen, S. Chai, K. Liu et al., ACS Appl. Mater. Interfaces, 4, No. 8: 4398 (2012). https://doi.org/10.1021/am3010576
5. D. W. Lee, V. L. De Los Santos, J. W. Seo et al., J. Phys. Chem. B, 114, Iss. 17: 5723 (2010). https://doi.org/10.1021/jp1002275
6. V. E. Muradyan, A. A. Arbuzov, E. A. Sokolov et al., Pis ma v Zhurn. Tekhn. Fiz., 39, No. 18: 1 (2013) (in Russian).
7. M. Reshetnyk, D. Starokadomsky, and A. Ishenko, American Journal of Physics and Applications, 11: 120 (2017). https://doi.org/10.11648/j.ajpa.20170506.19
8. S. V. Shulga, D. L. Starokadomsky, A. M. Levina et al., Khim. Fiz. Tekhnol. Poverkhni, 6, No. 3: 380 (2015). https://doi.org/10.15407/hftp06.03.380
9. D. L. Starokadomsky, American Journal of Polymer Science, 2, No. 5: 109 (2012). https://doi.org/10.5923/j.ajps.20120205.05
10. D. L. Starokadomskiy, Visnyk Ukrainskoho materialoznavchoho tovarystva, 1: 75 (2015) (in Russian).
11. D. Starokadomsky and I. Telegeev, American Journal of Polymer Science, 3, No. 5: 90 (2013).
12. D. L. Starokadomskiy, Ukrainskiy Khimicheskiy Zhurnal, 7–8: 89 (2010).
13. S. A. Nedilko and P. P. Popel, Zahalna i Neorhanichna Khimiya. Zadachi ta Vpravy (Kyiv: Lybid : 2001) (in Ukrainian).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement