Issues

 / 

2019

 / 

vol. 17 / 

Issue 2

 



Download the full version of the article (in PDF format)

A. V. Zdeshchyts, R. M. Balabai
«Electronic Properties of a Hybrid Composite of Nanocellulose/Graphene-Like ZnO from Calculations on the Basis of the First Principles»
283–298 (2019)

PACS numbers: 61.48.-c, 71.15.Mb, 71.20.Tx, 73.61.Wp, 79.60.Jv, 81.05.U-, 81.07.Pr

Within the framework of the methods of the electron density functional and the ab initio pseudopotential, the spatial distributions of the valence electrons’ density, the electron density of states, the band gap, the valence band, the charge for the cellulose-based model composite structures under mechanical influences are calculated using the author program complex. As determined, a change in the band gap of CNC/g-ZnO composites under mechanical compression tends to decrease. A significant charge transfer within the composite is recorded; it leads to the initiation of spatial charge regions of different signs.


Key words: electron density functional method, ab initio pseudopotential, hybrid composites, nanocrystalline cellulose, graphene-like ZnO, electronic properties.

https://doi.org/10.15407/nnn.17.02.283

References
1. S. Ummartyotin and M. Sain, Cellulose Composite for Electronic Devices (Thailand: Department of Physics, Faculty of Science and Technology, Thammasat University: 2016).
2. HORIZON 2020—Work Programme 2016–2017, Cross-Cutting Activities (Focus Areas), PILOTS-05-2017: Paper-Based Electronics.
3. I. V. Antonova, Semiconductors, 50, No. 1: 66 (2016). https://doi.org/10.1134/S106378261601005X
4. Y. Chujo, Current Opinion in Solid State and Materials Science, 1, Iss. 6: 806 (1996). https://doi.org/10.1016/S1359-0286(96)80105-7
5. L. Valentini, M. Cardinali, E. Fortunati, and J. M. Kenny, Appl. Phys. Lett., 105: 153111 (2014). https://doi.org/10.1063/1.4898601
6. C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee, and P. S. Lee, Adv. Mater., 26, No. 13: 1950 (2014). https://doi.org/10.1002/adma.201304742
7. A. Kafy, K. K. Sadasivuni, A. Akther, S. K. Min, and J. Kim, Mater. Lett., 159: 20 (2015). https://doi.org/10.1016/j.matlet.2015.05.102 8. C. D. Sim o, J. S. Reparaz, M. R. Wagner, B. Graczykowski, M. Kreuzer, Y. B. Ruiz-Blanco, Y. Garc a, J. M. Malho, A. R. Go i, J. Ahopelto, and C. M. Sotomayor Torres, Carbohydrate Polymers, 126: 40 (2015). https://doi.org/10.1016/j.carbpol.2015.03.032
9. R. Balabai and A. Zdeshchyts, Ukr. J. Phys., 63, No. 9: 828 (2018). https://doi.org/10.15407/ujpe63.9.828
10. F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfold, and J. H. Harding, J. Mater. Chem., 15: 139 (2005). https://doi.org/10.1039/B414111C
11. Z. C. Tu and X. Hu, Phys. Rev. B, 74: 035434 (2006). https://doi.org/10.1103/PhysRevB.74.035434
12. C. Tusche, H. L. Meyerheim, and J. Kirschner, Phys. Rev. Lett., 99: 026102 (2007). https://doi.org/10.1103/PhysRevLett.99.026102
13. Ab initio Calculation http://sites.google.com/a/kdpu.edu.ua/calculationphysics
14. W. Kohn and L. J. Sham, Phys. Rev., 140, No. 4A: A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
15. G. B. Bachelet, D. R. Hamann, and M. Schl ter, Phys. Rev. B, 26: 4199 (1982). https://doi.org/10.1103/PhysRevB.26.4199
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement