Issues

 / 

2019

 / 

vol. 17 / 

Issue 2

 



Download the full version of the article (in PDF format)

Yu. O. Kruglyak
«Physics of Nanotransistors: Integrating of Model of Transmission and Model of the Virtual Source—Model of Transmission of the Virtual Source»
255–282 (2019)

PACS numbers: 72.20.Dp, 73.23.Ad, 73.40.-c, 73.50.Bk, 84.32.Ff, 85.30.De, 85.35.-p

As shown, the transmission model can be closely related to the virtual source model. By simple replacing the diffusion mobility within the virtual source model by the apparent mobility for a linear current, we obtain the correct results from the ballistic limit to the diffusion limit. By replacing the saturation rate limited by scattering by the injection rate , we obtain the correct value of the current . A comparison of the experimentally measured characteristics shows that nanotransistors on a silicon substrate work very far from the ballistic limit, while nanosize III–V FETs work very close to the ballistic limit. There are two serious shortcomings concerning the model of passage. One of them is conditioned by the difficulty of calculating the dependence due to the problems of calculating the dependence . Another one is due to the difficulties in predicting the current that, in turn, is due to the difficulty of calculating the critical length at a high voltage on the drain; because of that, it is difficult to predict the magnitude of . Because of these limitations, the transmission model and the virtual source model are combined in such a way that the parameters of the transmission model are taken from the insertion of the experimental results into the virtual source model, and the physical meaning of the parameters is taken from the transmission model. It is shown how it is possible to analyse the volt-ampere characteristics of nanotransistors on the basis of the MVS/passage model. The variety of types of transistors generates new particular problems; however, the methodology for analysing experimental data does not fundamentally change. As stressed, the application of the MVS/transmission model is justified, if the transistor is assembled qualitatively. For such transistors, the model makes it possible to obtain physically meaningful parameters reliably.


Key words: nanoelectronics, field effect transistor, MOSFET, LDL model, transistor metrics, MVS/transmission model.

https://doi.org/10.15407/nnn.17.02.255

References
1. Yu. A. Kruglyak, Nanosistemi, Nanomateriali, Nanotehnologii, 17, No. 2: 225 (2019) (in Russian).
2. Yu. A. Kruglyak, Nanosistemi, Nanomateriali, Nanotehnologii, 17, No. 1: 57 (2019) (in Russian).
3. P. Palestri, D. Esseni, S. Eminente, C. Fiegna, E. Sangiorgi, and L. Selmi, IEEE Trans. Electron Dev., 52: 2727 (2005). https://doi.org/10.1109/TED.2005.859593
4. P. Palestri, R. Clerc, D. Esseni, L. Lucci, and L. Selmi, Intern. Electron Dev. Mtg. (IEDM), Technical Digest, 945 (2006).
5. R. Clerc, P. Palestri, L. Selmi, and G. Ghibaudo, J. Appl. Phys., 110: 104502 (2011). https://doi.org/10.1063/1.3660769
6. Yu. A. Kruglyak, Nanosistemi, Nanomateriali, Nanotehnologii, 17, No. 1: 25 (2019) (in Russian).
7. M. Lundstrom, Fundamentals of Carrier Transport (Cambridge, UK: Cambridge Univ. Press: 2000). https://doi.org/10.1017/CBO9780511618611
8. Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor (New York: Oxford Univ. Press: 2011).
9. K. Y. Lim and X. Zhou, Solid State Electron., 45: 193 (2001). https://doi.org/10.1016/S0038-1101(00)00190-8
10. M. J. Chen, H. T. Huang, K. C. Huang, P. N. Chen, C. S. Chang, and C. H. Diaz, Intern. Electron Dev. Mtg. (IEDM), Technical Digest, 39 (2002).
11. V. Barral, T. Poiroux, M. Vinet, J. Widiez, B. Previtali, P. Grosgeorges, G. Le Carval, S. Barraud, J. L. Autran, D. Munteanu, and S. Deleonibus,
Solid State Electron., 51: 537 (2007). https://doi.org/10.1016/j.sse.2007.02.016
12. M. Zilli, P. Palestri, D. Esseni, and L. Selmi, Intern. Electron Dev. Mtg. (IEDM), Technical Digest, 105 (2007).
13. R. Wang, H. Liu, R. Huang, J. Zhuge, L. Zhang, D. W. Kim, X. Zhang, D. Park, and Y. Wang, IEEE Trans. Electron Dev., 55: 2960 (2008). https://doi.org/10.1109/TED.2008.2005152
14. V. Barral, T. Poiroux, J. Saint-Martin, D. Munteanu, J. L. Autran, and S. Deleonibus, IEEE Trans. Electron Dev., 56: 408 (2009). https://doi.org/10.1109/TED.2008.2011681
15. V. Barral, T. Poiroux, D. Munteanu, J. L. Autran, and S. Deleonibus, IEEE Trans. Electron Dev., 56: 420 (2009). https://doi.org/10.1109/TED.2008.2011682
16. A. Khakifirooz and D. A. Antoniadis, Intern. Electron Dev. Mtg. (IEDM), Technical Digest, 667 (2006).
17. A. Khakifirooz and D. A. Antoniadis, IEEE Trans. Electron Dev., 55: 1391 (2008). https://doi.org/10.1109/TED.2008.921017
18. A. Khakifirooz and D. A. Antoniadis, IEEE Trans. Electron Dev., 55: 1401 (2008). https://doi.org/10.1109/TED.2008.921026
19. D. H. Kim, J. A. del Alamo, D. A. Antoniadis, and B. Brar, Intern. Electron Dev. Mtg. (IEDM), Technical Digest, 861 (2009).
20. A. Majumdar and D. A. Antoniadis, IEEE Trans. Electron Dev., 61: 351 (2014). https://doi.org/10.1109/TED.2013.2294380
21. S. Rakheja, M. Lundstrom, and D. Antoniadis, Intern. Electron Dev. Mtg. (IEDM), Technical Digest, 35.1.1 (2014).
22. A. Majumdar, Z. Ren, S. J. Koester, and W. Haensch, IEEE Trans. Electron Dev., 56: 2270 (2009). https://doi.org/10.1109/TED.2009.2028057
23. A. Majumdar, X. Wang, A. Kumar, J. R. Holt, D. Dobuzinsky, R. Venigalla, C. Ouyang, S. J. Koester, and W. Haensch, IEEE Electron Dev. Lett., 30: 413 (2009). https://doi.org/10.1109/LED.2009.2014086
24. D. H. Kim and J. A. del Alamo, IEEE Electron Dev. Lett., 29: 830 (2008). https://doi.org/10.1109/LED.2008.2000794
25. A. Khakifirooz, O. M. Nayfeh, and D. A. Antoniadis, IEEE Trans. Electron Dev., 56: 1674 (2009). https://doi.org/10.1109/TED.2009.2024022
26. Sh. Rakheja and D. Antoniadis, MVS 1.0.1 Nanotransistor Model (Silicon). www.nanohub.org/resources/19684.
27. Sh. Rakheja and D. Antoniadis, MVS Nanotransistor Model (Silicon) 1.1.1. www.nanohub.org/publications/15/4.
28. Yu. A. Kruglyak, Nanosistemi, Nanomateriali, Nanotehnologii, 16, No. 4: 599 (2018) (in Russian).
29. Y. Taur and T. Ning, Fundamentals of Modern VLSI Devices (New York: Oxford Univ. Press: 2013).
30. M. S. Lundstrom, IEEE Electron Dev. Lett., 18: 361 (1997). https://doi.org/10.1109/55.596937
31. Yu. A. Kruglyak, Nanosistemi, Nanomateriali, Nanotehnologii, 16, No. 3: 465 (2018) (in Russian).
32. M. Lundstrom, Fundamentals of Nanotransistors (Singapore: World Scientific: 2018). www.nanohub.org/courses/NT.
33. D. A. Antoniadis, IEEE Trans. Electron Dev., 63: 2650 (2016). https://doi.org/10.1109/TED.2016.2562739
34. K. Natori, H. Iwai, and K. Kakushima, J. Appl. Phys., 118: 234502 (2015). https://doi.org/10.1063/1.4937548
35. M. V. Fischetti and S. E. Laux, J. Appl. Phys., 89: 1205 (2001). https://doi.org/10.1063/1.1332423
36. T. Uechi, T. Fukui, and N. Sano, Phys. Status Solidi C, 5: 102 (2008). https://doi.org/10.1002/pssc.200776547
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement