Issues

 / 

2019

 / 

vol. 17 / 

Issue 1

 



Download the full version of the article (in PDF format)

M. V. Slavgorodska and A. V. Kyrychenko
«Binding Preference of \(\alpha-\)Cyclodextrin onto Gold Nanoparticles»
0133–0144 (2019)

PACS numbers: 02.70.Ns, 61.46.Bc, 61.46.Df, 68.35.Md, 68.43.Bc, 68.43.Fg, 82.75.-z

The binding preference of \(\alpha-\)Cyclodextrin \((\alpha-CD)\) onto the surface of a gold nanoparticle is studied by means of molecular dynamics (MD) simulations. As found, the \(\alpha-CD\) molecules bind onto the nanoparticle surface at the nanosecond time scale. Adsorption onto the gold nanoparticle surface occurs through multiple non-covalent interactions, among which non-covalent bonding of the aliphatic carbon atoms of \(\alpha-CD\) play a key role. The analysis shows that a \(\alpha-CD\) molecule prefers to bind onto the gold surface by its cone side. In addition, the MD simulations reveal that, upon the increase in concentration, the self-aggregation and steric repulsion among adsorbed \(\alpha-CD\) molecules affect its binding preference onto the surface of a gold nanoparticle.

Keywords: gold nanoparticle, cyclodextrin, \(\alpha-CD\), molecular dynamics simulation, adsorption

https://doi.org/10.15407/nnn.17.01.133

References
1. S. S. Lucky, K. C. Soo, and Y. Zhang, Chem. Rev., 115: 1990 (2015). https://doi.org/10.1021/cr5004198
2. A. R. Tao, S. Habas, and P. Yang, Small, 4: 310 (2008). https://doi.org/10.1002/smll.200701295
3. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, Acc. Chem. Res., 41: 1721 (2008). https://doi.org/10.1021/ar800035u
4. Y. Xia, K. D. Gilroy, H.-C. Peng, and X. Xia, Angew. Chem. Int. Ed., 56: 60 (2017). https://doi.org/10.1002/anie.201604731
5. J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, J. Am. Chem. Soc., 126: 7176 (2004). https://doi.org/10.1021/ja048678s
6. T. Huang, F. Meng, and L. Qi, J. Phys. Chem. C, 113: 13636 (2009). https://doi.org/10.1021/jp903405y
7. J. Su rez-Cerda, G. A. Nu ez, H. Espinoza-G mez, and L. Z. Flores-L pez, Mater. Sci. Eng. C, 43: 21 (2014). https://doi.org/10.1016/j.msec.2014.07.006
8. Y. Liu, K. B. Male, P. Bouvrette, and J. H. T. Luong, Chem. Mater., 15: 4172 (2003). https://doi.org/10.1021/cm0342041
9. A. Kyrychenko, G. V. Karpushina, S. I. Bogatyrenko, A. P. Kryshtal, and A. O. Doroshenko, Comput. Theor. Chem., 977: 34 (2011). https://doi.org/10.1016/j.comptc.2011.09.003
10. A. Kyrychenko, G. V. Karpushina, D. Svechkarev, D. Kolodezny, S. I. Bogatyrenko, A. P. Kryshtal, and A. O. Doroshenko, J. Phys. Chem. C, 116: 21059 (2012). https://doi.org/10.1021/jp3060813
11. A. Kyrychenko, Phys. Chem. Chem. Phys., 17: 12648 (2015). https://doi.org/10.1039/C5CP01136A
12. A. Kyrychenko, O. M. Korsun, I. I. Gubin, S. M. Kovalenko, and O. N. Kalugin, J. Phys. Chem. C, 119: 7888 (2015). https://doi.org/10.1021/jp510369a
13. M. M. Blazhynska, A. V. Kyrychenko, and O. N. Kalugin, Kharkov University Bulletin Chemical Series, 29 (52): 23 (2017). https://doi.org/10.26565/2220-637X-2017-29-02
14. A. Kyrychenko, D. A. Pasko, and O. N. Kalugin, Phys. Chem. Chem. Phys., 19: 8742 (2017). https://doi.org/10.1039/C6CP05562A
15. M. M. Blazhynska, A. Kyrychenko, and O. N. Kalugin, Mol. Simul., 44: 981 (2018). https://doi.org/10.1080/08927022.2018.1469751
16. A. Kyrychenko, M. M. Blazhynska, M. V. Slavgorodska, and O. N. Kalugin, J. Mol. Liq., 276: 243 (2019). https://doi.org/10.1016/j.molliq.2018.11.130
17. R. G. Capelo, L. Leppert, and R. Q. Albuquerque, J. Phys. Chem. C, 118: 21647 (2014). https://doi.org/10.1021/jp5058258
18. H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik, J. Phys. Chem. C, 112: 17281 (2008). https://doi.org/10.1021/jp801931d
19. A. Ryzhakov, T. Do Thi, J. Stappaerts, L. Bertoletti, K. Kimpe, A. R. S Couto, P. Saokham, G. Van den Mooter, P. Augustijns, G. W. Somsen, S. Kurkov, S. Inghelbrecht, A. Arien, M. I. Jimidar, K. Schrijnemakers, and T. Loftsson, J. Pharm. Sci., 105: 2556 (2016). https://doi.org/10.1016/j.xphs.2016.01.019
20. C. Cezard, X. Trivelli, F. Aubry, F. Djedaini-Pilard, and F.-Y. Dupradeau, Phys. Chem. Chem. Phys., 13: 15103 (2011). https://doi.org/10.1039/c1cp20854c
21. E. Mixcoha, J. Campos-Ter n, and . Pi eiro, J. Phys. Chem. B, 118: 6999 (2014). https://doi.org/10.1021/jp412533b
22. H. Zhang, T. Tan, C. Het nyi, Y. Lv, and D. van der Spoel, J. Phys. Chem. C, 118: 7163 (2014). https://doi.org/10.1021/jp412041d
23. H. Zhang, T. Tan, W. Feng, and D. van der Spoel, J. Phys. Chem. B, 116: 12684 (2012). https://doi.org/10.1021/jp308416p
24. H. Zhang, T. Tan, and D. van der Spoel, J. Chem. Theory Comput., 11: 5103 (2015). https://doi.org/10.1021/acs.jctc.5b00620
25. W. Khuntawee, P. Wolschann, T. Rungrotmongkol, J. Wong-Ekkabut, and S. Hannongbua, J. Chem. Inf. Model., 55: 1894 (2015). https://doi.org/10.1021/acs.jcim.5b00152
26. P. Brocos, N. D az-Vergara, X. Banquy, S. P rez-Casas, M. Costas, and . Pi eiro, J. Phys. Chem. B, 114: 12455 (2010). https://doi.org/10.1021/jp103223u
27. J. Gebhardt and N. Hansen, Fluid Phase Equilibria, 422: 1 (2016). https://doi.org/10.1016/j.fluid.2016.02.001
28. C. A. L pez, A. H. de Vries, and S. J. Marrink, Sci. Rep., 3: 02071/1 (2013). https://doi.org/10.1038/srep02071
29. M. I. Sancho, S. Andujar, R. D. Porasso, R. D. Enriz, J. Phys. Chem. B, 120: 3000 (2016). https://doi.org/10.1021/acs.jpcb.5b11317
30. M. Jana and S. Bandyopadhyay, Langmuir, 25: 13084 (2009). https://doi.org/10.1021/la902003y
31. M. Jana and S. Bandyopadhyay, Langmuir, 26: 14097 (2010). https://doi.org/10.1021/la101927g
32. M. Jana and S. Bandyopadhyay, J. Phys. Chem. B, 115: 6347 (2011). https://doi.org/10.1021/jp2013946
33. J. Chief Elk and I. Benjamin, Langmuir, 31: 5086 (2015). https://doi.org/10.1021/acs.langmuir.5b01025
34. H. Zhang, C. Ge, D. van der Spoel, W. Feng, and T. Tan, J. Phys. Chem. B, 116: 3880 (2012). https://doi.org/10.1021/jp300674d
35. J. He, C. Chipot, X. Shao, and W. Cai, J. Phys. Chem. C, 118: 24173 (2014). https://doi.org/10.1021/jp507325j
36. Y. Liu, C. Chipot, X. Shao, and W. Cai, RSC Adv., 5: 57309 (2015). https://doi.org/10.1039/C5RA05642J
37. K. D. Tidemand, C. Sch nbeck, R. Holm, P. Westh, and G. H. Peters, J. Phys. Chem. B, 118: 10889 (2014). https://doi.org/10.1021/jp506716d
38. K. J. Naidoo, M. R. Gamieldien, J. Y.-J. Chen, G. Widmalm, and A. Maliniak, J. Phys. Chem. B, 112: 15151 (2008). https://doi.org/10.1021/jp805174y
39. J. Rodriguez, D. Hern n Rico, L. Domenianni, and D. Laria, J. Phys. Chem. B, 112: 7522 (2008). https://doi.org/10.1021/jp711609q
40. C. Sch nbeck, P. Westh, and R. Holm, J. Phys. Chem. B, 118: 10120 (2014). https://doi.org/10.1021/jp506001j
41. W. Cai, T. Sun, X. Shao, and C. Chipot, Phys. Chem. Chem. Phys., 10: 3236 (2008). https://doi.org/10.1039/b717509d
42. K. J. Naidoo, J. Y.-J. Chen, J. L. M. Jansson, G. Widmalm, and A. Maliniak, J. Phys. Chem. B, 108: 4236 (2004). https://doi.org/10.1021/jp037704q
43. W.-S. Li, S.-C. Wang, T.-S. Hwang, and I. Chao, J. Phys. Chem. B, 116: 3477 (2012). https://doi.org/10.1021/jp207985q
44. R. V. Pinjari, K. A. Joshi, and S. P. Gejji, J. Phys. Chem. A, 110: 13073 (2006). https://doi.org/10.1021/jp065169z
45. W. Snor, E. Liedl, P. Weiss-Greiler, A. Karpfen, H. Viernstein, and P. Wolschann, Chem. Phys. Lett., 441: 159 (2007). https://doi.org/10.1016/j.cplett.2007.05.007
46. C. P. A. Anconi, C. S. Nascimento, J. Fedoce-Lopes, H. F. Dos Santos, and W. B. De Almeida, J. Phys. Chem. A, 111: 12127 (2007). https://doi.org/10.1021/jp0762424
47. V. Jim nez and J. B. Alderete, J. Phys. Chem. A, 112: 678 (2008). https://doi.org/10.1021/jp073011o
48. A. Stachowicz, A. Styrcz, J. Korchowiec, A. Modaressi, and M. Rogalski, Theor. Chem. Acc., 130: 939 (2011). https://doi.org/10.1007/s00214-011-1014-9
49. T. Heine, H. F. Dos Santos, S. Patchkovskii, and H. A. Duarte, J. Phys. Chem. A, 111: 5648 (2007). https://doi.org/10.1021/jp068988s
50. O. Guvench, S. S. Mallajosyula, E. P. Raman, E. Hatcher, K. Vanommeslaeghe, T. J. Foster, F. W. Jamison, and A. D. MacKerell, J. Chem. Theory Comput., 7: 3162 (2011). https://doi.org/10.1021/ct200328p
51. H. Heinz, T.-J. Lin, R. Kishore Mishra, and F. S. Emami, Langmuir, 29: 1754 (2013). https://doi.org/10.1021/la3038846
52. H. Heinz and H. Ramezani-Dakhel, Chem. Soc. Rev., 45: 412 (2016). https://doi.org/10.1039/C5CS00890E
53. J. Hermans, H. J. C. Berendsen, W. F. Van Gunsteren, and J. P. M. Postma, Biopolymers, 23: 1513 (1984). https://doi.org/10.1002/bip.360230807
54. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys., 126: 014101 (2007). https://doi.org/10.1063/1.2408420
55. T. Darden, D. York, and L. Pedersen, J. Chem. Phys., 98: 10089 (1993). https://doi.org/10.1063/1.464397
56. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem., 18: 1463 (1997). https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
57. B. Hess, J. Chem. Theory Comput., 4: 116 (2008). https://doi.org/10.1021/ct700200b
58. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem., 26: 1701 (2005). https://doi.org/10.1002/jcc.20291
59. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics, 14: 33 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
60. C. H. B. Ng, J. Yang, and W. Y. Fan, J. Phys. Chem. C, 112: 4141 (2008). https://doi.org/10.1021/jp710553c
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2019 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement