Issues

 / 

2019

 / 

vol. 17 / 

Issue 1

 



Download the full version of the article (in PDF format)

D. I. Saltykov, Yu. O. Shkurdoda, and I. Yu. Protsenko
«Temperature Effects in Magnetoresistive Properties of Three-Layer Films Based on \(Fe_{80}Co_{20}\) Alloy and Copper»
101–109 (2019)

PACS numbers: 68.55.-a, 72.15.Gd, 73.50.Jt, 73.61.At, 73.63.Bd, 75.47.De, 75.47.Np

The influence of heat-treatment conditions on the magnetoresistive properties of three-layer films based on \(Fe_{80}Co_{20}\) alloy and Cu is investigated. As shown, for all as-deposited systems with a layer of copper with the thickness of 5–15 nm and ferromagnetic layers with \(d_F = 30–40\) nm, the field dependences are isotropic. In the case when the giant magnetoresistance is fixed, its amplitude has relatively large values in films annealed to 400 or 550 K. An increase of temperature to 700 K leads to an irreversible transition to anisotropic magnetoresistance. At the decreasing total thickness of as-deposited systems with ferromagnetic interlayers of 10–20 nm, the dependences become anisotropic. Annealing of them at a temperature of 550 K leads to a change in the nature of the magnetoresistance to isotropic one. In all investigated films with an isotropic character of magnetoresistance, both as-deposited and annealed ones at different temperatures, a decrease in the temperature of measurement down to 120 K stimulates an increase in magnitude of the magnetoresistance, which is due to the magnon and inelastic-phonon scatterings of electrons.

Keywords: three-layer films, thermal treatment, GMR effect, spin-dependent electron scattering, magnetoresistance

https://doi.org/10.15407/nnn.17.01.101

References
1. R. S. Sundar and S. C. Deevi, Mater. Sci. Eng. A, 369: 164 (2004). https://doi.org/10.1016/j.msea.2003.11.004
2. Jincai Li, Qingfeng Zhan, Shuanglan Zhang, Jinwu Wei, Jianbo Wang, Minjie Pan, Yali Xie, Huali Yang, Zheng Zhou, Shuhong Xie, Baomin Wang, and Run-Wei Li, Scientific Reports, 7: 2837 (2017). https://doi.org/10.1038/s41598-017-03288-6
3. L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, A. Wienecke, L. Rissing, and M. Christopher Wurz, Sensors, 15: 28665 (2015). https://doi.org/10.3390/s151128665
4. T. Sahin, H. Kockar, and M. Alper, J. Magn. Magn. Mater., 373: 128 (2015). https://doi.org/10.1016/j.jmmm.2014.03.029
5. E. M. Kakuno, D. H. Mosca, I. Mazzaro, N. Mattoso, W. H. Schreiner, M. A. B. Gomes, and M. P. Cant o, J. Electrochem. Soc., 144, No. 9: 3222 (1997). https://doi.org/10.1149/1.1837987
6. D. I. Saltykov, Yu. O. Shkurdoda, and I. Yu. Protsenko, J. Nano- Electron. Phys., 10, No. 4: 04031-1 (2018). https://doi.org/10.21272/jnep.10(4).04031
7. D. I. Saltykov, Yu. O. Shkurdoda, and I. Yu. Protsenko, J. Nano- Electron. Phys., 10, No. 3: 03024-1 (2018). https://doi.org/10.21272/jnep.10(3).03024
8. Yu. O. Shkurdoda, I. M. Pazukha, and A. M. Chornous, Intermetallics, 93: 1 (2018). https://doi.org/10.1016/j.intermet.2017.10.007
9. O. I. Tovstolytkin, M. O. Borovyy, V. V. Kurylyuk, and Yu. A. Kunyts'kyy, Fizychni Osnovy Spintroniky (Vinnytsya: Nilan-LTD: 2014)) (in Ukrainian).
10. Yu. M. Shabelnyk, L. V. Odnodvorets, and I. Yu. Protsenko, Nanosistemi, Nanomateriali, Nanotehnologii, 10, No. 3: 495 (2012) (in Ukrainian).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement