Issues

 / 

2019

 / 

vol. 17 / 

Issue 1

 



Download the full version of the article (in PDF format)

F. M. Bukhanko and A. F. Bukhanko
«Evolution of the Magnetization Peak–Hill Features in \(La_{0.15}Sm_{0.85}MnO_{3+\delta}\) Near to Transition Temperature to the Superconducting State, \(T_C\approx41K\), Caused by Increasing of an External Magnetic Field»
0081–0100 (2019)

PACS numbers: 71.10.Pm, 71.70.Ej, 74.20.Mn, 75.30.Fv, 75.30.Kz, 75.47.Lx, 75.50.-y, 75.60.Ej

In this paper, the peak–hill-features of the temperature dependences of magnetization M(T) of \(La_{0.15}Sm_{0.85}MnO_{3+\delta}\) manganites, measured in fields of H = 7, 100, 350, 1050, and 3500 Oe in ZFC-measurements’ mode in the temperature interval \(4.2 \leq T \leq 100K\), are investigated. As assumed, the two sharp peaks of M(T) with different intensities detected in a weak field of H = 100 Oe at near temperatures, T1 and T2, which are slightly higher than the critical temperature, \(Òñ \approx 41^{\circ}\) K, of the phase transition to the superconducting state, correspond to the Lindhard divergence of the temperature dependence of the electron magnetic susceptibility \({\chi}L(q_{nest})\) at wave-vectors’ magnitudes, \(q_{nest1}=2k_{F1}\) and \(q_{nest2}=2k_{F2}\), in two spatially separated areas of the sample (conditionally ‘metallic’ and ‘dielectric’ nanophases) with the large and small densities of free-carriers’ states at the Fermi level, \(N_1(E_F){\ll}N_2(E_F)\). The appearance of such areas can be explained by the formation of the spatial modulation of the electronic and magnetic properties in the form of the charge/spin density waves’ fragments with wave vectors q1||a and q2||b in the ab plane at temperature \(T{\lt}60^{\circ}\) K, which are incommensurate with the crystal lattice. This leads to phase separation of the sample to quasi-one-dimensional ‘metallic’ FM and ‘dielectric’ AFM nanophases coexisting in a dynamic mode as the nanoscale quasi-one-dimensional ferromagnetic and antiferromagnetic spin correlations. Experimental results obtained in this work confirm the close relation between the formation of the periodic charge/spin correlations in the form of two-dimensional nanocells in the ab plane and the emergence of high-temperature superconductivity.

Keywords: quantum spin liquid, high-temperature superconductivity, nesting of Fermi surface, charge (spin) density waves, 2D nanocells

https://doi.org/10.15407/nnn.17.01.081

References
1. T. S. Dessau, T. Saitoh, C.-H. Dark, Z.-X. Shen, P. Villella, N. Hamada, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett., 81: 192 (1998). https://doi.org/10.1103/PhysRevLett.81.192
T. Saitoh, D. S. Dessau, Y. Moritomo, T. Kimura, Y. Tokura, and N. Hamada, Phys. Rev. B, 62: 1039 (2000). https://doi.org/10.1103/PhysRevB.62.1039
2. Y.-D. Chuang, A. D. Gromko, D. S. Dessau, T. Kimura, and Y. Tokura, Science, 292: 1509 (2001). https://doi.org/10.1126/science.1059255
3. Z. Sun, Y.-D. Chuang, A. V. Fedorov, J. F. Douglas, D. Reznik, F. Weber, N. Aliouane, D. N. Argyriou, H. Zheng, J. F. Mitchell, T. Kimura, Y. Tokura, A. Revcolevschi, and D. S. Dessau, Phys. Rev. Lett., 97: 056401 (2006). https://doi.org/10.1103/PhysRevLett.97.056401
Z. Sun, J. F. Douglas, Q. Wang, D. S. Dessau, A. V. Fedorov, H. Lin, S. Sahrakorpi, B. Barbiellini, R. S. Markiewicz, A. Bansil, H. Zheng, and J. F. Mitchell, Phys. Rev. B, 78: 075101 (2008). https://doi.org/10.1103/PhysRevB.78.075101
4. Myung Whun Kim, H. J. Lee, B. J. Yang, and K. H. Kim, Y. Moritomo, Jaejun Yu, and T.W. Noh, Phys. Rev. Lett., 98: 187201 (2007). https://doi.org/10.1103/PhysRevLett.98.187201
5. N. Mannella, W. L. Yang, X. J. Zhou, H. Zheng, J. F. Mitchell, J. Zaanen, T. P. Devereaux, N. Nagaosa, Z. Hussain, and Z.-X. Shen, Nature (London), 438: 474 (2005). https://doi.org/10.1038/nature04273
6. R. Saniz, M. R. Norman, and A. J. Freeman, Phys. Rev. Lett., 101: 236402 (2008). https://doi.org/10.1103/PhysRevLett.101.236402
7. J. Salafranca, G. Alvarez, and E. Dagotto, Phys. Rev. B, 80: 155133 (2009). https://doi.org/10.1103/PhysRevB.80.155133
8. F. N. Bukhanko and A. F. Bukhanko, Fizika Tverdogo Tela, 58: 506 (2016) (in Russian).
9. V. J. Emery, S. A. Kivelson, and O. Zahar, Phys. Rev. B, 56: 6120 (1997). https://doi.org/10.1103/PhysRevB.56.6120
10. V. J. Emery, S. A. Kivelson, and J. M. Tranquada, PNAS, 96: 8814 (1999). https://doi.org/10.1073/pnas.96.16.8814
11. S. A. Kivelson, E. Fradrin, and V. J. Emery, Nature, 393: 550 (1998). https://doi.org/10.1038/31177
12. T. Kashima and M. Imada, J. Phys. Soc. Jpn., 70: 3052 (2001). https://doi.org/10.1143/JPSJ.70.3052
13. M. Morita, S. Watanabe, and M. Imada, J. Phys. Soc. Jpn., 71: 2109 (2002). https://doi.org/10.1143/JPSJ.71.2109
14. M. Imada, Phys. Rev. B, 72: 075113 (2005). https://doi.org/10.1103/PhysRevB.72.075113
15. J. Brink, G. Khaliullin, and D. Khomskii, Phys. Rev. Lett., 83: 5118 (1999). https://doi.org/10.1103/PhysRevLett.83.5118
16. F. N. Bukhanko and A. F. Bukhanko, Fizika Tverdogo Tela, 57: 1098 (2015) (in Russian). https://doi.org/10.1134/S1063783415060062
17. F. N. Bukhanko and A. F. Bukhanko, Nanosistemi, Nanomateriali, Nanotehnologii, 15, No. 1: 1 (2017) (in Russian).
18. H. Darhmaoui and J. Jung, Phys. Rev. B, 57: 8009 (1998). https://doi.org/10.1103/PhysRevB.57.8009
19. J. Etheridge, Philos. Mag., A73: 643 (1996). https://doi.org/10.1080/01418619608242988
20. C. Ebner and D. Stroud, Phys.Rev. B, 39: 789 (1989). https://doi.org/10.1103/PhysRevB.39.789
21. V. J. Emery and S. A. Kivelson, Phys. Rev. Lett., 74: 3253 (1995). https://doi.org/10.1103/PhysRevLett.74.3253
22. J. Halbritter, J. Low Temp. Phys., 105: 1249 (1996). https://doi.org/10.1007/BF00753871
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2019 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement