vol. 16 / 

Issue 4


Download the full version of the article (in PDF format)

A. O. Honcharenko, S. V. Chornobuk, O. Yu. Popov, and V. A. Makara
«Modelling of the Influence of Internal Stresses on the Cracking in Ceramic Materials of a Layer \(Al_2O_3-(Al_2O_3 + ZrO_2)\) System»
671–680 (2018)

PACS numbers: finite-element method, thermal stresses, ceramics, stress state

In this work, the role of residual thermal stresses in ceramic materials in the formation of a stressed state under uniaxial loading of the sample is investigated. The numerical solution of a set of equations describing a stressed state by means of the finite-element method (FEM) gives results illustrating the effect of stress concentration on the crack behaviour.

Keywords: 46.15.-x, 46.25.Cc, 46.50.+a,, 62.25.Mn, 81.05.Je, 81.40.Np

1. V. F. Berdikov, N. I. Bogomolov, A. V. Babanin, and M. D. Katrich, Novoye v Oblasti Ispytaniy na Mikrotvyordost [Novelty in a Field of the Microhardness Testing] (Moscow: Nauka: 1974), p. 119 (in Russian).
2. Legkie Ballisticheskie Materialy [Lightweight Ballistic Materials] (Ed. A. Bhatnagar) (Moscow: Tekhnosfera: 2011) (Russian translation).
3. G. Gour, Procedia Engineering, 173: 93 (2017).
4. M. L. Wilkins, C. F. Cline, and C. A. Honodel, Lightarmor. Livermore (CA: Lawrence Radiation Laboratory, University of California: 1969).
5. D. Viechnicki, W. Blumenthal, M. Slavin, C. Tracy, and H. Skeele, ArmorCeramics, 27 (1987).
6. M. W. Chen, J. W. McCauley, D. P. Dandekar, and N. K. Bourne, Nature Mater., 5: 614 (2006).
7. A. Krell and E. Strassburger, Mater Sci. Eng. A, 597: 422 (2014).
8. D. Ashkinand and R. Palicka, Compositions for Improved Ceramic Armor (Patent application 0240517) (Sep. 23, 2010).
9. S. Sarva, S. Nemat-Nasser, J. McGee, and J. Issacs, International Journal of Impact Engineering, 34: 277 (2007).
10. A. Samiee, J. Issacs, and S. Nemat-Nasser, Proceedings of SPIE 7644, 76441Y-1 (2010).
11. P. Reddy, V. Madhu, K. Ramanjaneyulu, T. Balakrishna Bhat, K. Jayaraman, and N. Gupta, Defence Science Journal, 58: 264 (2008).
12. J. McDonald and S. Satapathy, Procedia Engineering, 103: 538 (2015).
13. D. B. Rahbek, J. W. Simons, B. B. Johnsen, T. Kobayashi, and D. A. Shockey, International Journal of Impact Engineering, 99: 58 (2017).
14. R. Tandon and S. Jill Glass, Journal of the European Ceramic Society, 35, No. 1: 285 (2015).
15. R. Tandon, D. J. Green, and R. F. Cook, J. Am. Ceram. Soc., 73, No. 191: 2619 (1990).
16. B. Lawn and R. Willshaw, Journal of Materials Science, 10: 1049 (1975).
17. L. A. Xue, X. Wu, I-W. Chen, J. Am. Ceram. Soc., 74, No. 141: 842 (1991).
18. P. Auerkari, Mechanical and Physical Properties of Engineering Alumina Ceramics (Espoo: Technical Research Centre of Finland: 1996), vol. 1792.
19. C. Piconi and G. Maccauro, Biomaterials, 20: 1 (1999).
20. K. K. Chawla, Revista Brasileira de F sica, 4, No. 3: 1974.
21. S. H. Kim, S. I. Hong, and S. J. Kim, Journal of Materials Processing Technology, 112: 109 (2001).
22. H. E. Lutz and N. Claussen, Journal of the European Ceramic Society, 7, Iss. 4: 209 (1991).
23. N. Claussen, J. Steeb, and R. F. Pabst, Amer. Ceram. Soc. Bull., 55: 559 (1977).
24. A. G. Evans and Y. Fu, Fracture in Ceramics Materials (Ed. A. G. Evans) (New Jersey: Noyes: 1984).
25. T. Mori and P. J. Withers, Residual Stress: Interphase Stresses (Ed. S. Hashmi) (Oxford: Elsevier: 2016).
26. E. H. Yoffe, Philos. Mag. A, 46: 617 (1982).
27. P. Vena, Meccanica, 40: 163 (2005).
28. P. F. Becher, Transient Thermal Stress Behavior in ZrO2-Toughened Al2O3 (Washington, D.C.: Naval Research Laboratory: 1980).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement