Issues

 / 

2018

 / 

vol. 16 / 

Issue 2

 



Download the full version of the article (in PDF format)

T. I. Borodinova, V. I. Styopkin, A. A. Vasko, V. E. Kutsenko*, and O. A. Marchenko
«Growth of Gold Nanoprisms on Freshly Cleaved Mica Surface»
413–424 (2018)

PACS numbers: 66.20.Ej, 68.08.Bc, 68.37.Hk, 81.07.Bc, 81.10.Dn, 81.16.Be, 81.16.Dn

A numerous methods are being used for synthesis of gold nanoparticles (NPs) in liquid media, in micelles, and at different interfaces. The size and geometry of NPs depend on parameters of synthesis. Here, we propose the modified polyol method of synthesis of Au NPs on freshly cleaved mica surfaces. In such conditions, the nanoprisms (NPrs) and nearly spherical NPs are being simultaneously formed on the mica substrate. We have determined the parameters of synthesis, with which preferential formation of NPrs is being realized. The percentage of NPrs depends on the surface conditions, in particular, on wettability of the surface by growth medium. We demonstrate that both the size and the morphology of grown NPs can be controlled by means of components of growth medium and parameters of synthesis.

Keywords: mica, nanoparticles, nanoprisms, gold, polyol synthesis

https://doi.org/10.15407/nnn.16.02.413

References
1. P. C. Chen, C. M. Sandra, and A. K. Oyelere, Nanotechnology, Science and Applications, 1: 45 (2008). https://doi.org/10.2147/NSA.S3707
2. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Acc. Chem. Res., 41, No. 12: 1578 (2008). https://doi.org/10.1021/ar7002804
3. S. S. Pekamwar, V. S. Deshmukh, and T. M. Kalyankar, IRJP, 6: 693 (2015). https://doi.org/10.7897/2230-8407.0610135
4. P. Baptista, E. Pereira, P. Eaton, G. Doria, A. Miranda, I. Gomes, P. Quaresma, and R. Franco, Anal. Bioanal. Chem., 391, No. 3: 943 (2008). https://doi.org/10.1007/s00216-007-1768-z
5. J. Hu, Z. Wang, and J. Li, Sensors, 7, No. 12: 3299 (2007). https://doi.org/10.3390/s7123299
6. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Lasers. Med. Sci., 23: 217 (2008). https://doi.org/10.1007/s10103-007-0470-x
7. X. L. Luo, J. J. Xu, Y. Du, and H. Y. Chen, Anal. Biochem., 334, No. 2: 284 (2004). https://doi.org/10.1016/j.ab.2004.07.005
8. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev., 108: 494 (2008). https://doi.org/10.1021/cr068126n
9. J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hech, Nat. Photonics, 9: 582 (2015). https://doi.org/10.1038/nphoton.2015.141
10. C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, ACS Photonics, 2, No. 4: 497 (2015). https://doi.org/10.1021/ph500374r
11. J.-S. Huang, V. Callegari, P. Geisler, C. Br ning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, Nat. Commun., 1: 350 (2010). https://doi.org/10.1038/ncomms1143
12. Z. Liu, F. Xue, Y. Su, Y. M. Lvov, and K. Varahramyan, IEEE Trans. Nanotechnol., 5, No. 4: 379 (2006). https://doi.org/10.1109/TNANO.2006.876928
13. R. K. Gupta, G. Ying, M. P. Srinivasan, and P. S. Lee, J. Phys. Chem. B, 116, Iss. 32: 9784 (2012). https://doi.org/10.1021/jp3008283
14. W. Xu, J. S. Kong, and P. Chen, Phys. Chem. Chem. Phys., 11: 2767 (2009). https://doi.org/10.1039/b820052a
15. M. Haruta, Gold Bulletin, 37: 27 (2004). https://doi.org/10.1007/BF03215514
16. H. Masatake and D. Masakazu, Appl. Catal. A, 222, Nos. 1-2: 427 (2001).
17. M. Fana, G. F. Andrade, and A. G. Brolo, Anal. Chim. Acta, 693, Nos. 1-2: 7 (2011). https://doi.org/10.1016/j.aca.2011.03.002
18. T. I. Borodinova, V. G. Kravets, and V. R. Romanyuk, J. Nano- Electron. Phys., 4, No. 2: 02039 (2012).
19. E. S. Shibu, K. Kimura, and T. Pradeep, Chem. Mater., 21: 3773 (2009). https://doi.org/10.1021/cm8035136
20. D. H. Dahanayaka, J. X. Wang, S. Hossain, and L. A. Bumm, J. Am. Chem. Soc., 128, Iss. 18: 6052 (2006). https://doi.org/10.1021/ja060862l
21. P. R. Sajanlal and T. Pradeep, J. Chem. Sci., 120, No. 1: 79 (2008). https://doi.org/10.1007/s12039-008-0010-7
22. B. Radha, M. Arif, R. Datta, T. K. Kundu, and G. U. Kulkarni, Nano Res., 3, No. 10: 738 (2010). https://doi.org/10.1007/s12274-010-0040-6
23. T. K. Sau and C. J. Murphy, J. Am. Chem. Soc., 126: 8648 (2004). https://doi.org/10.1021/ja047846d
24. J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, J. Am. Chem. Soc., 127, Iss. 15: 5312 (2005). https://doi.org/10.1021/ja043245a
25. J. E. Millstone, G. S. M traux, and C. A. Mirkin, Advanced Functional Materials, 16, No. 9: 1209 (2006). https://doi.org/10.1002/adfm.200600066
26. D. Lee, S. Hong, and S. Park, Bull. Korean Chem. Soc., 32, No. 10: 3575 (2011). https://doi.org/10.5012/bkcs.2011.32.10.3575
27. L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marz n, ACS Nano, 8, No. 6: 5833 (2014). https://doi.org/10.1021/nn500727w
28. V. R. Estrela-Llopis, T. I. Borodinova, and I. N. Yurkova, Nano-Science: Colloidal and Interfacial Aspects (Ed. V. M. Starov) (London-New York: CPC Press Taylor Francis Group: 2010), p. 307. https://doi.org/10.1201/EBK1420065008-c12
29. T. Ogi, N. Saitoh, T. Nomura, and Y. Konishi, J. Nanopart. Res., 12: 2531 (2010). https://doi.org/10.1007/s11051-009-9822-8
30. S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry, Nat. Mater., 3: 482 (2004). https://doi.org/10.1038/nmat1152
31. V. C. Verma, S. K. Singh, R. Solanki, and S. Prakash, Nanoscale Res. Lett., 6: 16 (2011). https://doi.org/10.1186/1556-276X-6-261
32. A. Miranda, E. Malheiro, E. Skiba, P. Quaresma, P. A. Carvalho, P. Eaton, B. De Castro, J. A. Shelnutt, and E. Pereira, Nanoscale, 2, No. 10: 2209 (2012). https://doi.org/10.1039/c0nr00337a
33. H.-C. Chu, C.-H. Kuo, and M. H. Huang, Inorg. Chem., 45, No. 2: 808 (2006). https://doi.org/10.1021/ic051758s
34. F. Kim, S. Connor, H. Song, T. Kuykendall, and P. D. Yang, Angew. Chem. Int. Ed., 43: 3673 (2004). https://doi.org/10.1002/anie.200454216
35. C. C. Li, W. P. Cai, B. Q. Cao, F. Q. Sun, Y. Li, C. X. Kan, and L. D. Zhang, Advanced Functional Materials, 16, No. 1: 83 (2006). https://doi.org/10.1002/adfm.200500209
36. H. Liuab and Q. Yang, Cryst. Eng. Comm., 13: 2281 (2011).
37. T. I. Borodinova, V. I. Sapsay, and V. R. Romanyuk, J. Nano- Electron. Phys., 7, No. 1: 01032 (2015).
38. C. Wang, C. Kan, J. Zhu, X. Zeng, X. Wang, H. Li, and D. Shi, J. Nanomaterials, 2010, Article ID 969030 (2010). https://doi.org/10.1155/2010/969030
39. M. Tsuji, N. Miyamae, M. Hashimoto, M. Nishio, S. Hikino, N. Ishigami, and I. Tanaka, Colloids Surf. A, 302, Nos. 1-3: 587 (2007). https://doi.org/10.1016/j.colsurfa.2007.03.044
40. N. B. Vargaftik, Spravochnik po Teplofizicheskim Svoistvam Gazov i Zhidkostey [Handbook of Thermophysical Properties of Gases and Liquids] (Moscow: Nauka: 1972) (in Russian).
41. K. I. Volkov, P. N. Zagibalov, and M. S. Metsik, Svoistva, Dobycha i Pererabotka Slyudy [Properties, Extraction and Processing of Mica] (Irkutsk: Vostochno-Sibirskoye Knizhnoye Izdatel'stvo: 1971) (in Russian).
42. V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc., 72, No. 11: 4847 (1950). https://doi.org/10.1021/ja01167a001
43. Y. Zhai, J. S. DuChene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. DiCiaccio, K. Qian, E. W. Zhao, F. Ooi, D. Hu, D.Su, E. A. Stach, Z. Zhu, and W. D. Wei, Nat. Mater., 15, No. 8: 889 (2016). https://doi.org/10.1038/nmat4683
44. C. Lofton and W. Sigmund, Advanced Functional Materials, 15: 1197 (2005). https://doi.org/10.1002/adfm.200400091
45. T. Yonezawa and N. Toshima, J. Chem. Soc. Faraday Trans., 91: 4111 (1995). https://doi.org/10.1039/ft9959104111
46. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, and T. Tsuji, Chem. Eur. J., 11: 440 (2004). https://doi.org/10.1002/chem.200400417
47. C. Li, W. Cai, Y. Li, J. Hu, and P. Liu, J. Phys. Chem. B, 110, No. 4: 1546 (2006). https://doi.org/10.1021/jp055522l
48. J. E. Millstone, S. J. Hurst, G. S. M traux, J. I. Cutler, and C. A. Mirkin, Small, 5, No. 6: 646 (2009). https://doi.org/10.1002/smll.200801480
49. W. D. Tennyson, C. E. Allen, D. R. Freno, D. H. Dahanayaka, and L. A. Bumm, Microscopy and Microanalysis, 14, Iss. S2: 22 (2008). https://doi.org/10.1017/S1431927608085802
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement