Issues

 / 

2018

 / 

vol. 16 / 

Issue 2

 



Download the full version of the article (in PDF format)

E. L. Pavlenko, V. A. Sendiuk, V. A. Brusentsov, O. P. Dmytrenko, M. P. Kulish, N. V. Obernihina, Y. O. Prostota, O. D. Kachkovsky, and V. S. Brovarets
«Quantum-Chemical Study of Acceptor Properties of Fullerene and Its Bridge Derivatives»
389–401 (2018)

PACS numbers: 31.15.-p, 31.50.-x, 33.15.-e, 33.70.-w, 36.20.-r, 61.48.-c, 81.05.ub

The quantum-chemical study of the 1- and 2-dimensional conjugated hydrocarbon systems with ordinary sp2-hybridization of the carbons (polyenes and acenes) is performed. The analysis shows that the energies of frontier levels depend directly on the extending of the ?-system, but the energy-gap middle remains practically the same and corresponds to the energy of the initial 2pz-electrons forming the collective system of ?-electrons. The shift of the energy-gap middle in any conjugated molecule in respect to the standard polyenic or aromatic system can be connected to the donor–acceptor property. For its quantitative estimation, the topological index ?0 is proposed. Going to non-aromatic compounds as well as to concave conjugated-surfaces’ shifts, the energy gap downs and hence decreases the topological index ?0. Therefore, the fullerene with its spherical constitution is proven as a strong acceptor. Introducing a carbon bridge to the fullerene molecule with two sp3-hybridized carbons can increase the parameter ?0 and decrease its acceptor strength.

Keywords: fullerene and its bridge derivatives, planar and concave conjugated surfaces, quantum-chemical calculations, energy gap, topological index

https://doi.org/10.15407/nnn.16.02.389

References
1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature, 318: 162 (1985). https://doi.org/10.1038/318162a0
2. L. W. Tutt and A. Kost, Nature, 356: 225 (1992). https://doi.org/10.1038/356225a0
3. G. Orlandi and F. Negri, Photochem. Photobiol. Sci., 1: 289 (2002). https://doi.org/10.1039/b200178k
4. C. H. Zhou and X. Zhao, J. Comput. Chem., 33: 861 (2012). https://doi.org/10.1002/jcc.22922
5. C. Deibel and V. Dyakonov, Rep. Prog. Phys., 73: 401 (2010). https://doi.org/10.1088/0034-4885/73/9/096401
6. C. Villegas, E. Krokos, P. A. Bouit, J. L. Delgado, D. M. Guldi, and N. Martin, Energy Environ. Sci., 4: 679 (2011). https://doi.org/10.1039/c0ee00497a
7. F. Meng, J. Hua, K. Chen, H. Tian, L. Zuppiroli, and F. Nueesch, J. Mater. Chem., 15: 979 (2005). https://doi.org/10.1039/B413557C
8. A. M. Lopez, A. Mateo-Alonso, and M. Prato, J. Mater. Chem., 21: 1305 (2011). https://doi.org/10.1039/C0JM02386H
9. E. F. Sheka, Chem. Phys. Lett., 438, Iss. 1-3: 119 (2007). https://doi.org/10.1016/j.cplett.2007.02.053
10. K. Sen, R. Crespo-Otero, W. Thiel, and M. Barbatti, Comput. Theoret. Chem., 1040-1041: 237 (2014). https://doi.org/10.1016/j.comptc.2014.02.024
11. A. Streitwiser, Molecular Orbital Theory (New York-London: John Wiley and Sons, Inc.: 1963).
12. M. Frisch, G. Trucks, H. Schlegel et al., Gaussian03; Revision B.05 (Pittsburgh, PA: Gaussian Inc.: 2003).
13. A. D. Kachkovskiy, Russian Chemical Reviews, 66: 647 (1997). https://doi.org/10.1070/RC1997v066n08ABEH000274
14. N. E. Kornienko, N. P. Kulish, S. A. Alekseev, O. P. Dmitrenko, and E. L. Pavlenko, Opt. Spectrosc., 109: 742 (2010). https://doi.org/10.1134/S0030400X10110147
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement