Issues

 / 

2017

 / 

Vol. 15 / 

issue 4

 



Download paper in PDF

L. S. Yablon, I. M. Budzulyak, O. V. Morushko, R. V. Ilnythky, O. M. Hemiy, and A. I. Kachmar
«Formation and Properties of MoS2/C Composite for Lithium Current Sources»
741–755 (2017)

PACS numbers: 62.23.-c, 78.30.Hv, 81.05.Rm, 81.05.U-, 81.16.Be, 81.40.Wx, 82.47.Aa

In this work, the structure, physical and electrochemical properties of molybdenum disulphide/nanoporous carbon-material composites obtained by the mechanochemical-analysis and ultrasonic-dispersion methods as well as by the combination of hydrothermal method with ultrasonic treatment are investigated. The high values of specific capacitance (1820, 2205, 2510 A•h/kg) are obtained for lithium current sources (LCS) based on MoS2/C composites, which are caused by the contribution of the Faraday and capacitive processes occurring at the electrode/electrolyte interface.


Key words: composite, molybdenum disulphide, nanoporous carbon, specific capacity, lithium current sources.

https://doi.org/10.15407/nnn.15.04.0741

REFERENCES

1. I. M. Budzulyak, M. V. Karpeth', L. S. Yablon et al., Journal of Nano- and Electronic Physics, 8, No. 2: 02029-1 (2016) (in Ukrainian).
2. S. H. Yastrebov, V. I. Ivanov-Omsky, F. Dumitrache, and K. Moroshanu, Semiconductors, 37, No. 4: 490 (2003) (in Russian).
https://doi.org/10.1134/1.1568471
3. B. A. Ahranat, M. N. Dubrovin, and N. N. Havsky. Osnovy Fiziki i Tekhniki Ultrazvuka [Fundamentals of Physics and Technology of Ultrasound] (Moscow: Vysshaya Shkola: 1987) (in Russian).
4. V. L. Lanin, N. V. Dyejkunov, and A. V. Kotuhov, Surface Engineering and Applied Electrochemistry, 3: 28 (2010) (in Russian).
5. P. H. Dumitrash and M. K. Bologa, Surface Engineering and Applied Electrochemistry, 2: 71 (2007).
6. Manas Mandal, Debasis Ghosh, Swinderjeet Singh Kalra, Chapal Kumar Das, International Journal of Latest Research in Science and Technology, 3, No. 3: 65 (2000).
7. E. Zolotoyabko, Journal of Applied Crystallography, 42: 513 (2009).
https://doi.org/10.1107/S0021889809013727
8. L. Ma, G. Huang, W. Chen et al., Journal of Power Sources, 264: 262 (2014).
https://doi.org/10.1016/j.jpowsour.2014.04.084
9. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys., 61, No. 3: 689 (1989).
https://doi.org/10.1103/RevModPhys.61.689
10. X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, Physical Review B, 87: 115413-1 (2013).
https://doi.org/10.1103/PhysRevB.87.115413
11. H. Li, Q. Zhang, Ch. Chong Ray Yap, B. Kang Tay, T. Hang Tong Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater., 22: 1385 (2012).
https://doi.org/10.1002/adfm.201102111
12. B. C. Windom, W. G. Sawyer, and D. W. Hahn, Tribol. Lett., 42, No. 3: 301 (2011).
https://doi.org/10.1007/s11249-011-9774-x
13. M. Ye, D. Winslow, D. Zhang, R. Pandey, and Y. Khin Yap, Photonics, 2: 288 (2015).
https://doi.org/10.3390/photonics2010288
14. S. Najmaei, Z. Liu, P.M. Ajayan, and J. Lou, Appl. Phys. Lett., 100: 013106 (2012).
https://doi.org/10.1063/1.3673907
15. G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B, 60, No. 121: 2883 (1999).
https://doi.org/10.1103/PhysRevB.60.2883
16. L. Ma, W.-X. Chen, Z.-D. Xu, J.-B. Xia, and X. Li, Nanotechnology, 17: 571 (2006).
https://doi.org/10.1088/0957-4484/17/2/038
17. B. Krauss, T. Lohmann, D.-H. Chae, M. Haluska, K. von Klitzing, and J. H. Smet, Phys. Rev. B, 79: 165428 (2009).
https://doi.org/10.1103/PhysRevB.79.165428
18. A. C. Ferrari and J. Robertson, Phys. Rev. B, 61: 20: 14095 (2000).
https://doi.org/10.1103/PhysRevB.61.14095
19. A. Molina-Sanchez and L. Wirtz, Phys. Rev. B, 84: 155413 (2011).
https://doi.org/10.1103/PhysRevB.84.155413
20. T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, Energy Environ. Sci., 7: 209 (2014).
https://doi.org/10.1039/C3EE42591F
21. K. Chrissafis, M. Zamani, K. Kambas et al., Mater. Sci. Eng. B, 3: 145 (1989).
https://doi.org/10.1016/0921-5107(89)90194-3
22. X. Fang, X. Guo, Y. Mao et al., Asian Journal of Chemistry, 7: 1013 (2012).
https://doi.org/10.1002/asia.201100796
23. K. Chang and W. X. Chen, ACS Nano, 5: 4720 (2011).
https://doi.org/10.1021/nn200659w
24. M. A. Py and R. R. Haerin, Can. J. Phys, 61: 76 (1983).
https://doi.org/10.1139/p83-013
25. P. J. Mulhe, Can. J. Phys., 67: 1049 (1989).
https://doi.org/10.1139/p89-184
26. M. Wang, G. Li, H. Xu et al., American Chemical Society Appl. Mater. Interfaces, 5: 1003 (2013).
https://doi.org/10.1021/am3026954
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement