Issues

 / 

2017

 / 

Vol. 15 / 

issue 4

 



Download paper in PDF

I. A. Tokarieva and B. I. Bayrachny
«Nanostructured Anodic Oxide Coatings on Valve Metals—Challenges and Opportunities»
713–740 (2017)

PACS numbers: 68.37.Hk, 78.67.Rb, 81.07.De, 81.65.Mq, 82.45.Aa, 82.45.Cc, 82.45.Yz

The general characteristics of achievements and trends in the field of electrochemical formation of nanostructured oxide coatings on valve metals (Al, Ti, Nb) are presented. The theoretical concepts of mechanisms of formation of a porous anodic oxide layer are generalized. The electrolysis regimes and electrolyte compositions of the electrochemical formation of porous anodic coatings are systematized. The experimental-investigation data of morphological features and physicochemical characteristics of nanostructured oxide coatings on valve metals are analysed, and the possibilities of their practical use are considered.


Key words: porous anodic oxide film, anodic oxidation, nanostructured oxide coating, valve metal.

https://doi.org/10.15407/nnn.15.04.0713

REFERENCES

1. A. S. Shirinyan and V. A. Makara, Nanosistemi, Nanomateriali, Nanotehnologii, 8, No. 2: 223 (2010) (in Ukrainian).
2. D. Sengupta, P. Das, B. Mondal, and K. Mukherjee, Renewable and Sustainable Energy Reviews, 60: 356 (2016).
https://doi.org/10.1016/j.rser.2016.01.104
3. L. L. Odyinets, Anodnyye Oksidnyye Plyonki (Leningrad: Nauka: 1990) (in Russian).
4. B. I. Bayrachnyiy and F. K. Andryuschenko, Ehlektrokhimiya Ventilnykh Metallov (Kharkov: Vyshcha Shkola: 1985) (in Russian).
5. H. D. L. Lira and R. Paterson, Journal of Membrane Science, 206: 375 (2002).
https://doi.org/10.1016/S0376-7388(01)00782-7
6. M. Kaneko and I. Okuro, Photocatalysis (Kodansha: Springer: 2002).
7. I. L. Bataronov, A. L. Gusev, Yu. V. Litvinov, E. L. Kharchenko, and Yu. N. Shalimov, Mezhdunarodnyy Nauchnyy Zhurnal ‘Alternativnaya Ehnergetika i Ehkologiya’, 11, No. 55: 118 (2007) (in Russian).
8. V. Surganov and A. Mozalev, Microelectronic Engineering, 37/38: 329 (1997).
https://doi.org/10.1016/S0167-9317(97)00129-9
9. E. Eisenbarth, D. Velten, M. Muller, R. Thull, and J. Breme, J. Biomed. Mater. Res. A, 79, No. 1: 166 (2006).
https://doi.org/10.1002/jbm.a.30823
10. S. A. Pauline and N. Rajendran, Applied Surface Science, 290: 448 (2014).
https://doi.org/10.1016/j.apsusc.2013.11.112
11. X. J. Wang, Y. C. Li, J. G. Lin, Y. Yamada, P. D. Hodgson, and C. E. Wen, Acta Biomaterialia, 4, No. 5: 1530 (2008).
https://doi.org/10.1016/j.actbio.2008.04.005
12. S. L. Starikova, Vykorystannya Tantalu i Niobiyu z Modyfikovanoyu Poverkhneyu dlya Dentalnoi Implantatsii (Thesis of Disser. for Ph.D. Med. Sci.) (Odesa: 2006) (in Ukrainian).
13. S. A. Ulasevich, A. I. Kulak, O. N. Musskaya, S. K. Poznyak, and E. V. Skorb, Nanosistemi, Nanomateriali, Nanotehnologii, 12, No. 1: 181 (2014) (in Russian).
14. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Advanced Materials, 15: 353 (2003).
https://doi.org/10.1002/adma.200390087
15. M. I. Baraton, Sensors for Environment, Health and Security (Netherlands: Springer: 2009).
https://doi.org/10.1007/978-1-4020-9009-7
16. I. D. Voytovich, T. S. Lebedeva, P. B. Shpilevoy, and N. V. Bednov, Nanosistemi, Nanomateriali, Nanotehnologii, 12, No. 1: 169 (2014) (in Russian).
17. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, and C. A. Grimes, J. Mater. Res., 19: 628 (2004).
https://doi.org/10.1557/jmr.2004.19.2.628
18. X. Xu, B. Z. Tian, J. L. Kong, S. Zhang, B. H. Liu, and D. Y. Zhao, Advanced Materials, 15: 1932 (2003).
https://doi.org/10.1002/adma.200305424
19. S. V. Volkov, L. S. Lyisyuk, V. S. Vorobets, G. Ya. Kolbasov, and V. M. Ogenko, Nanosistemi, Nanomateriali, Nanotehnologii, 8, No. 4: 963 (2010) (in Russian).
20. J. Z. Ou, R. A. Rani, Moon-Ho Ham, M. R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R. B. Kaner, and K. Kalantarzadeh, Acsnano, 6, No. 5: 4045 (2012).
https://doi.org/10.1021/nn300408p
21. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 6, No. 2: 215 (2006).
https://doi.org/10.1021/nl052099j
22. J. E. Yoo, J. Park, G. Cha, and J. Choi, Thin Solid Films, 531: 583 (2013).
https://doi.org/10.1016/j.tsf.2013.01.062
23. A. F. Bogoyavlenskiy, Anodnaya Zaschita Metallov (Moscow: Mashinostroenie: 1964) (in Russian).
24. I. V. Suminov, P. N. Belkin, A. V. Epelfeld, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plazmenno-Ehlektroliticheskoye Modifitsirovanie Poverkhnosti Metallov i Splavov (Moscow: Tekhnosfera: 2011) (in Russian).
25. A. F. Bogoyavlenskiy, Zhurnal Prikladnoy Khimii, 45, No. 3: 682 (1972) (in Russian).
26. A. F. Bogoyavlenskiy, Izv. Vuzov. Khimiya i Khimicheskaya Tekhnologiya, 14, No. 5: 712 (1971) (in Russian).
27. E. E. Averyanov, Spravochnik po Anodirovaniyu (Moscow: Mashinostroenie: 1988) (in Russian).
28. O. Jessensky, F. Muller, and U. Gosele, Applied Physics Letters, 72: 1173 (1998).
https://doi.org/10.1063/1.121004
29. J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Angew. Chem. Int. Ed., 44: 7463 (2005).
https://doi.org/10.1002/anie.200502781
30. J. M. Macak, H. Tsuchiya, and P. Schmuki, Angew. Chem. Int. Ed., 44: 2100 (2005).
https://doi.org/10.1002/anie.200462459
31. L. V. Taveira, J. M. Macak, and H. Tsuchiya, J. Electrochem. Soc., 152: B405 (2005).
https://doi.org/10.1149/1.2008980
32. D. D. Makdonald, Elektrokhimiya, 48, No. 3: 259 (2012) (in Russian).
33. I. F. Lin, C. Y. Chao, and D. D. Macdonald, J. Electrochem., 128, No. 6: 1194 (1981).
https://doi.org/10.1149/1.2127592
34. De-Sheng Kong, Langmuir, 26, No. 7: 4880 (2010).
https://doi.org/10.1021/la9036869
35. B. Tzvetkov, M. Bojinov, and A. Girginov, J. Solid State Electrochem., 13: 1215 (2009).
https://doi.org/10.1007/s10008-008-0651-y
36. M. Wang, Y. Liu, and H. Yang, Electrochimica Acta, 62: 424 (2012).
https://doi.org/10.1016/j.electacta.2011.12.054
37. L. I. Skatkov, Ehlektrodnyye Protsessy na Niobievykh Anodnykh Oksidnykh Plyonkakh v Kondensatornykh Strukturakh (Thesis of Disser. for Ph.D. Tech. Sci.) (Kharkov: 1990) (in Russian).
38. B. I. Bayrachnyiy, L. V. Lyashok, and I. A. Tokareva, Perspektivnyye Materialy, No. 2: 66 (2014) (in Russian).
39. A. T. Vasko and S. K. Kovach, Ehlektrokhimiya Tugoplavkikh Metallov (Kiev: Tekhnika: 1983) (in Russian).
40. I. A. Tokareva, B. I. Bayrachnyiy, L. V. Lyashok, and Yu. V. Miroshnichenko, Abstr. MicroCAD (May 29-31, 2013, Kharkiv), vol. 2, p. 273 (in Russian).
41. I. V. Roslyakov, E. O. Gordeeva, and K. S. Napolskii, Electrochimica Acta, 241, No. 1: 362 (2017).
https://doi.org/10.1016/j.electacta.2017.04.140
42. M. Pashchanka and J. J. Schneider, J. Phys. Chem. C, 120, No. 27: 14590 (2016).
https://doi.org/10.1021/acs.jpcc.5b11801
43. K. R. Hebert, S. P. Albu, I. Paramasivam, and P. Schmuki, Nature Materials, 11, No. 2: 162 (2012).
https://doi.org/10.1038/nmat3185
44. Y. C. Choi, J. Y. Hyeon, and S. D. Bu, Journal of the Korean Physical Society, 55, No. 2: 835 (2009).
https://doi.org/10.3938/jkps.55.835
45. J. Poinern, N. Ali, and D. Fawcett, Materials, 4: 487 (2011).
https://doi.org/10.3390/ma4030487
46. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc., 100, No. 9: 411 (1953).
https://doi.org/10.1149/1.2781142
47. T. Kikuchi, O. Nishinaga, S. Natsui, and R. O. Suzuki, Electrochimica Acta, 137, No. 10: 728 (2014).
https://doi.org/10.1016/j.electacta.2014.06.078
48. Y. Li, Z. Y. Ling, S. S. Chen, and J. C. Wang, Nanotechnology, 19: 225604 (2008).
https://doi.org/10.1088/0957-4484/19/22/225604
49. H. Masuda and K. Fukuda, Science, 268, No. 5216: 1466 (1995).
https://doi.org/10.1126/science.268.5216.1466
50. A. V. Atraschenko, A. A. Krasilin, I. S. Kuchuk, E. M. Aryislanova, S. A. Chivilikhin, and P. A. Belov, Nanosistemy: Fizika, Khimiya, Matematika, 3, No. 3: 31 (2012) (in Russian).
51. M. Jaafar, D. Navas, M. Hernandez-Velez, J. L. Baldonedo, M. Vazquez, and A. Asenjo, Surface Science, 603, No. 20: 3155 (2009).
https://doi.org/10.1016/j.susc.2009.09.002
52. Y. Tomaru, T. Tani, Y. Hotta, Y. Hatanaka, and M. Naya, Fujifilm Research & Development, 53: 36 (2008).
53. H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda, Journal of the Electrochemical Society, 148, No. 4: B152 (2001).
https://doi.org/10.1149/1.1355686
54. N. Zhao, X. Jiang, C. Shi, J. Li, Z. Zhao, and X. Du, J. Mater. Sci., 42: 3878 (2007).
https://doi.org/10.1007/s10853-006-0410-3
55. S. J. Garcia-Vergara, G. E. Thompson, and H. Habazaki, Electrochimica Acta, 52, No. 2: 681 (2006).
https://doi.org/10.1016/j.electacta.2006.05.054
56. W. Lee, R. Scholz, K. Nielsch, and U. Gesele, Angewandte Chemie, 117, No. 37: 6204 (2005).
https://doi.org/10.1002/ange.200501341
57. D. Mombello, N. L. Pira, L. Belforte, P. Perlo, G. Innocenti, S. Bossi, and M. E. Maffei, Sensors and Actuators B: Chemical, 137, No. 1: 76 (2009).
https://doi.org/10.1016/j.snb.2008.11.046
58. K. S. Napolskiy, Ehlektrokhimicheskoye Formirovanie Prostranstvenno-Uporyadochennykh Metallicheskikh Nanostruktur v Poristykh Matritsakh (Thesis of Disser. for Ph.D. Chem. Sci.) (Moscow: 2009) (in Russian).
59. W. M. De Azevedo, D. D. de Carvalho, H. J. Khoury, E. A. de Vasconcelos, and E. F. Da Silva Jr., Mater. Sci. Eng. B, 112, Nos. 2-3: 171 (2004).
https://doi.org/10.1016/j.mseb.2004.05.039
60. G. D. Sulka and K. Parkola, Thin Solid Films, 515: 338 (2006).
https://doi.org/10.1016/j.tsf.2005.12.094
61. S. Prasad and J. Quijano, Biosensors and Bioelectronics, 21: 1219 (2006).
https://doi.org/10.1016/j.bios.2005.05.005
62. A. N. Belov, S. A. Gavrilov, and V. I. Shevyakov, Rossiyskie Nanotekhnologii, 1, Nos. 1-2: 223 (2006) (in Russian).
63. S. Ono, M. Saito, and H. Asoh, Electrochimica Acta, 51: 827 (2005).
https://doi.org/10.1016/j.electacta.2005.05.058
64. I. Vrublevsky, A. Jagminas, S. Hemeltjen, and W. Goedel, Journal of Solid State Electrochemistry, 13: 1873 (2009).
https://doi.org/10.1007/s10008-008-0765-2
65. S. Ono and N. Masuko, Surface and Coatings Technology, 169: 139 (2003).
https://doi.org/10.1016/S0257-8972(03)00197-X
66. A. Mozalev, I. Mozalev, M. Sakairi, and H. Takahashi, Electrochimica Acta, 50: 5065 (2005).
https://doi.org/10.1016/j.electacta.2005.02.092
67. D. A. Buldakov, D. I. Petukhov, I. V. Kolesnik, A. A. Eliseev, A. V. Lukashin, Yu. D. Tretyakov, Rossiyskie Nanotekhnologii, 4, Nos. 5-6: 78 (2009) (in Russian).
https://doi.org/10.1134/S1995078009050061
68. V. Zwilling, M. Aucouturier, and E. Darque-Ceretti, Electrochimica Acta, 44: 921 (1999).
https://doi.org/10.1016/S0013-4686(99)00283-2
69. A. Ghicov, H. Tsuchiya, J. M. Macak, and P. Schmuki, Electrochemistry Communication, 7: 505 (2005).
https://doi.org/10.1016/j.elecom.2005.03.007
70. M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, J. Phys. Chem. B, 110: 16179 (2006).
https://doi.org/10.1021/jp064020k
71. K. S. Raja, M. Misra, and K. Paramguru, Electrochimica Acta, 51: 154 (2005).
https://doi.org/10.1016/j.electacta.2005.04.011
72. X. Chen, M. Schriver, T. Suen, and S. S. Mao, Thin Solid Films, 515, No. 24: 8511 (2007).
https://doi.org/10.1016/j.tsf.2007.03.110
73. N. K. Allam, K. Shankar, and C. A. Grimes, Journal of Materials Chemistry, 18, No. 20: 2341 (2008).
https://doi.org/10.1039/b718580d
74. D. P. Oyarzun, R. Cordova, O. E. Linarez Perez, E. Munoz, R. Henriquez, M. L. Teijelo, and H. Gomez, J. Solid State Electrochem., 15: 2265 (2011).
https://doi.org/10.1007/s10008-010-1236-0
75. G. K. Mor, O. K. Varghese, M. Paulose, K. G. Ong, and C. A. Grimes, Thin Solid Films, 496: 42 (2006).
https://doi.org/10.1016/j.tsf.2005.08.190
76. M. P. Neupane, I. S. Park, M. H. Lee, T. S. Bae, and F. Watari, Bio-Med. Mater. Eng., 19: 77 (2009).
77. Y. Wang, J. Tao, L. Wang, P. He, and T. Wang, Trans. Nonferrous Met. Soc. China, 18: 631 (2008).
https://doi.org/10.1016/S1003-6326(08)60110-7
78. I. Demetrescu, D. Ionita, C. Pirvu, and D. Portan, Mol. Cryst. Liq. Cryst., 521: 195 (2010).
https://doi.org/10.1080/15421401003715918
79. B. Feng, X. Chu, J. Chen, J. Wang, X. Lu, and J. Weng, J. Porous Mater., 17: 453 (2009).
https://doi.org/10.1007/s10934-009-9307-2
80. R. Narayanan, T. Y. Kwon, and K. H. Kim, Mater Chem. Phys., 117, Nos. 2-3: 460 (2009).
https://doi.org/10.1016/j.matchemphys.2009.06.023
81. S. P. Albu, A. Ghicov, J. M. Macak, and P. Schmuki, Phys. Status Solidi RRL, 1, No. 2: R65 (2007).
https://doi.org/10.1002/pssr.200600069
82. S. Yoriya, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, Journal of Physical Chemistry C, 111, No. 37: 13770 (2007).
https://doi.org/10.1021/jp074655z
83. C. Richter, Z. Wu, E. Panaitescu, R. J. Willey, and L. Menon, Advanced Materials, 19, No. 7: 946 (2007).
https://doi.org/10.1002/adma.200602389
84. I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, Electrochemistry Communications, 7, No. 1: 97 (2005).
https://doi.org/10.1016/j.elecom.2004.11.012
85. B. I. Bairachnyi, I. A. Tokarieva, Fizyka i Khimiia Tverdoho Tila, 17, No. 2: 160 (2016) (in Ukrainian).
86. J. Choi, J. H. Lim, S. C. Lee, J. H. Chang, K. J Kim, and M. A. Cho, Electrochimica Acta, 51: 5502 (2006).
https://doi.org/10.1016/j.electacta.2006.02.024
87. R. Kirchgeorg, W. Wei, K. Lee, S. So, and P. Schmuki, Chemistry Open, 1, No. 1: 21 (2012).
https://doi.org/10.1002/open.201100012
88. J. E. Yoo, J. Park, and G. Cha, Thin Solid Films, 531: 402 (2013).
89. I. A. Tokarieva, Ehlektrokhimichnyi Syntez Porystykh Oksydnykh Pokryttiv na Niobii (Thesis of Disser. for Ph.D. Tech. Sci.) (Kharkiv: 2015) (in Ukrainian).
90. Y. Oikawa, T. Minami, H. Mayama, and K. Tsujii, Acta Materialia, 57: 3941 (2009).
https://doi.org/10.1016/j.actamat.2009.04.050
91. W. Wei, K. Lee, S. Shaw, and P. Schmuki, Chem. Commun., 48: 4244 (2012).
https://doi.org/10.1039/c2cc31007d
92. J. E. Yoo and J. Choi, Electrochimica Acta, 55: 5142 (2010).
https://doi.org/10.1016/j.electacta.2010.04.021
93 J. Z. Ou, R. A. Rani, M. H. Ham, M. R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R. B. Kaner, and K. Kalantarzadeh, ACSnano, 6, No. 5: 4045 (2012). https://doi.org/10.1021/nn300408p
94. L. Skatkov, L. Lyashok, V. Gomozov, I. Tokareva, and B. Bayrachniy, J. Electrochem. Sci. Eng., 4, No. 2: 75 (2014).
95. S. Yang, Y. Aoki, and H. Habazaki, Applied Surface Science, 257: 8190 (2011).
https://doi.org/10.1016/j.apsusc.2011.01.041
96. A. Eftekhari, Nanostructured Materials in Electrochemistry (Weinheim: 2008).
https://doi.org/10.1002/9783527621507
97. G. Liu, K. Wangn, N. Hoivik, and H. Jakobsen, Solar Energy Materials and Solar Cells, 98: 24 (2012).
https://doi.org/10.1016/j.solmat.2011.11.004
98. S. Yang, H. Habazaki, T. Fujii, Y. Aoki, P. Skeldon, and G. E. Thompson, Electrochim. Acta, 56: 7446 (2011).
https://doi.org/10.1016/j.electacta.2011.07.005
99. Q. Cai, L. Yang, and Y. Yu, Thin Solid Films, 515: 1802 (2006).
https://doi.org/10.1016/j.tsf.2006.06.040
100. Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, J. Mater. Res., 20: 230 (2011).
101. H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Journal of Physical Chemistry C, 111, No. 20: 7235 (2007). https://doi.org/10.1021/jp070273h
102. J. M. Macak, L. V. Taveira, H. Tsuchiya, K. Sirotna, J. Macak, and P. Schmuki, J. Electroceram., 16: 29 (2006). https://doi.org/10.1007/s10832-006-3904-0
103. S. Mahshid, A. Dolati, M. Goodarzi, M. Askari, and A. Ghahramaninezhad, ECS Transactions, 28, No. 7: 67 (2010).
104. A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, Appl. Phys. Lett., 7: 1039 (2001).
105. C. L. Xu, H. Li, G. Y. Zhao, and H. L. Li, Mater. Lett., 60: 2335 (2006). https://doi.org/10.1016/j.matlet.2006.01.052
106. P. Roy, D. Kim, I. Paramasivam, and P. Schmuki, Electrochem. Commun., 11: 1001 (2009). https://doi.org/10.1016/j.elecom.2009.02.049
107. N. K. Shrestha, M. Yang, Y. C. Nah, I. Paramasivam, and P. Schmuki, Electrochem. Commun., 12: 254 (2010). https://doi.org/10.1016/j.elecom.2009.12.007
108. S. Park, H. C. Kim, and T. D. Chung, Analyst, 137: 3891 (2012). https://doi.org/10.1039/c2an35294j
109. D. V. Solovey, G. G. Gorokh, and V. N. Sakharuk, Nanosistemi, Nanomateriali, Nanotehnologii, 9, No. 1: 143 (2011) (in Russian).
110. J. M. Macak, P. J. Barczuk, H. Tsuchiya, M. Z. Nowakowska, A. Ghicov, M. Chojak, S. Bauer, S. Virtanen, P. J. Kulesza, and P. Schmuki, Electrochem. Commun., 7: 1417 (2005). https://doi.org/10.1016/j.elecom.2005.09.031
111. K. Tanabe, Catal. Today, 8, No. 1: 1 (1990). https://doi.org/10.1016/0920-5861(90)87003-L
112 F. A. Chernyishkova, Uspekhi Khimii, 62, No. 8: 788 (1993) (in Russian).
113. J. C. Ganley, K. L. Riechmann, E. G. Seebauer, and R. I. Masel, Journal of Catalysis, 227: 26 (2004). https://doi.org/10.1016/j.jcat.2004.06.016
114. J. Zhao, X. Wang, and R. Xu, Electrochemical and Solid-State Letters, 10, No. 4: 31 (2007). https://doi.org/10.1149/1.2458528
115. W. D. K. Clark and N. Sutin, J. Am. Chem. Soc., 99: 467 (1977).
116. A. A. Dronov, Issledovanie i Razrabotka Tekhnologiy Sozdaniya Fotoehlektrodov na Osnove Nanostrukturirovannogo Oksida Titana (Thesis of Disser. for Ph.D. Tech. Sci.) (Moscow: 2012) (in Russian).
117. N. S. Borodinov, D. A. Buldakov, A. A. Eliseev, D. I. Petuhov, Mezhdunarodnyy Nauchnyy Zhurnal ‘Alternativnaya Ehnergetika i Ehkologiya’, 8: 101 (2013) (in Russian).
118. Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, and H. Gu, International Journal of Hydrogen Energy, 37: 4526 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.004
119. H. Gu, Z. Wang, and Y. Hu, Sensors, 12: 5517 (2012). https://doi.org/10.3390/s120505517
120. G. Korotcenkov, Materials Science and Engineering, 139: 1 (2007). https://doi.org/10.1016/j.mseb.2007.01.044
121. T. Hyodo, J. Ohoka, Y. Shimizu, and M. Egashira, Sensors and Actuators B, 117: 359 (2006). https://doi.org/10.1016/j.snb.2005.11.015
122. I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, and H. L. Tuller, Nano Lett., 6: 2009 (2006). https://doi.org/10.1021/nl061197h
123 O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, Sens. Actuators B, 93: 338 (2003). https://doi.org/10.1016/S0925-4005(03)00222-3
124. J. M. Macak, M. Zlamal, J. Krysa, and P. Schmuki, Small, 3: 300 (2007). https://doi.org/10.1002/smll.200600426
125. I. Paramasivalm, J. M. Macak, and P. Schmuki, Electrochem. Commun., 10: 71 (2008). https://doi.org/10.1016/j.elecom.2007.11.001
126. M. Zlamal, J. M. Macak, P. Schmuki, and J. Krysa, Electrochem. Commun., 9: 2822 (2007). https://doi.org/10.1016/j.elecom.2007.10.002
127. P. J. Barczuk, H. Tsuchiya, J. M. Macak, P. Schmuki, D. Szymanska, O. Makowski, K. Miecznikowski, and P. J. Kulesza, Electrochem. Solid-State Lett., 9: E13 (2006). https://doi.org/10.1149/1.2190597
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement