Issues

 / 

2017

 / 

Vol. 15 / 

issue 4

 



Download paper in PDF

V. S. Bushkova and B. K. Ostafiychuk
«Electronic Transport Phenomena of Electric Charge in Semiconductors Ni1-xCdxFe2O4»
687–701 (2017)

PACS numbers: 72.20.-i, 75.50.Gg, 77.22.-d, 81.16.Be, 81.20.Fw, 81.20.Ka, 84.37.+q

In the present work, cadmium-substituted nickel ferrite with a general formula Ni1-xCdxFe2O4 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) have been prepared by means of the low-temperature sol–gel technology with participation of autocombustion and are investigated for their electrical and dielectric properties such as dc resistivity rhodc, dc conductivity sigmadc, dielectric permeability epsilon, and dielectric loss tg(delta) as functions of Cd2+ concentration. The results for studied properties of the Ni1-xCdxFe2O4 ferrites are given in the temperature range 298–723 K and in the frequency range 10–2–106 Hz. As detected, the course of curves represented in Nyquist coordinates depends on temperature. As shown, with increasing temperature, conductivity of nickel–cadmium ferrites increases too. As determined, the activation energy EÀ of dc conductivity at high temperatures increases significantly. High-temperature EÀ is equal to 0.32–0.54 eV. This is due to a change in mechanism of conductivity in the temperature range 340–360 K for samples, which contain Cd2+ ions. The dependences of epsilon and tg(delta) on the frequency of the alternating applied electric field are in accordance with the Maxwell–Wagner model.


Key words: sol–gel technology, nickel–cadmium ferrite, dielectric permeability, specific conductivity, activation energy.

https://doi.org/10.15407/nnn.15.04.0687

REFERENCES

1. A. Goldman, Modern Ferrite Technology (New York: Springer: 2006).
2. N. Bagum, M. A. Gafur, A. H. Bhuiyan, and D. K. Saha, phys. status solidi (a), 207: 986 (2010).
https://doi.org/10.1002/pssa.200925257
3. D. Vladikova, L. Ilkov, and S. Karbanov, phys. status solidi (a), 121: 249 (1990).
https://doi.org/10.1002/pssa.2211210130
4. H. Ji, Z. Lan, Z. Yu, and Z. Xu, IEEE Trans. Magn., 46: 974 (2010).
https://doi.org/10.1109/TMAG.2009.2037954
5. B. Seongtae, L. Sang Won, A. Hirukawa, Y. Takemura, J. Youn Haeng, and L. Sang Geun, IEEE Trans. Nanotechnol., 8: 86 (2009).
https://doi.org/10.1109/TNANO.2008.2007214
6. S. E. Shirsath, B. G. Toksha, and K. M. Jadhav, Mater. Chem. Phys., 117: 163 (2009).
https://doi.org/10.1016/j.matchemphys.2009.05.027
7. S. C. Watawe, U. A. Bamne, S. P. Gonbare, and R. B. Tangsali, Mater. Chem. Phys., 103: 323 (2007).
https://doi.org/10.1016/j.matchemphys.2007.02.037
8. I. H. Gul, W. Ahmed, and A. Maqsood, J. Magn. Magn. Mater., 320: 270 (2008).
https://doi.org/10.1016/j.jmmm.2007.05.032
9. V. S. Bushkova, J. Nano- and Electronic Physics, 8: 01002 (2016).
https://doi.org/10.21272/jnep.8(1).01002
10. V. S. Bushkova, B. K. Ostafiychuk, I. P. Yaremij, M. L. Mokhnatskyi, Metallofiz. Noveishie Tekhnol., 38: 601 (2016).
https://doi.org/10.15407/mfint.38.05.0601
11. N. A. Lomanova and V. V. Gusarov, Nanosistemy: Fizika, Khimiya, Matematika, 3: 112 (2012).
12. M. J. Iqbal, R. A. Khan, Sh. Mizukami, and T. Miyazaki, J. Magn. Magn. Mater., 323: 2137 (2011).
https://doi.org/10.1016/j.jmmm.2011.03.009
13. R. Suresh, P. Moganavally, and M. Deepa, IOSR-JAC, 8: 1 (2015).
14. Z. Z. Lazarevic, C. Jovalekic, D. Sekulic, M. Slankamenac, M. Romcevic, A. Milutinovic, and N. Z. Romcevic, Science of Sintering, 44: 331 (2012).
https://doi.org/10.2298/SOS1203331L
15. Yu. Sitidze and H. Sato, Ferrites (Moscow: Mir: 1964) (Russian translation).
16. M. A. Hakim, S. K. Nath, S. S. Sikder, and K. H. Maria, Journal of Physics and Chemistry of Solids, 74: 1316 (2013).
https://doi.org/10.1016/j.jpcs.2013.04.011
17. Sh. Choudhury, M. A. Bhuiyan, and Sh. M. Hoque, Int. Nano Lett., 1: 111 (2011).
18. K. V. Kumar, R. Sridhar, D. Ravinder, and K. R. Krishna, International Journal of Applied Physics and Mathematics, 4: 113 (2014).
https://doi.org/10.7763/IJAPM.2014.V4.265
19. B. A. Aldar, R. K. Pinjari, and N. M. Burange, IOSR Journal of Applied Physics, 6: 23 (2014).
https://doi.org/10.9790/4861-06422326
20. S. S. Jadhav, S. E. Shrisath, B. G. Toksha, D. R. Shengule, and K. M. Jadhav, J. Opto. Adv. Mater., 10: 2644 (2008).
21. R. S. Deven, Y. D. Kolekar, and B. K. Chougule, J. Phys.: Condens. Matter, 18: 9809 (2006).
https://doi.org/10.1088/0953-8984/18/43/004
22. A. D. Sheikh and V. L. Mathe, Journal of Materials Science, 43: 2018 (2008).
https://doi.org/10.1007/s10853-007-2302-6
23. R. G. Kharabe, R. S. Devan, C. M. Kanamadi, and B. K. Chougule, Smart Materials and Structures, 15: 36 (2006).
https://doi.org/10.1088/0964-1726/15/2/N02
24. M. M. Karanjkar, N. L. Tarwal, A. S. Vaigankar, and P. S. Patil, Ceramics International, 39: 1757 (2013).
https://doi.org/10.1016/j.ceramint.2012.08.022
25. A. M. Abdeen, J. Magn. Magn. Mater., 192: 121 (1999).
https://doi.org/10.1016/S0304-8853(98)00324-2
26. B. H. Devmunde, M. B. Solunke, and D. R. Shengule, Bionano Frontier, 8: 10 (2015).
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement