Issues

 / 

2017

 / 

Vol. 15 / 

issue 4

 



Download paper in PDF

V. O. Kotsyubynsky, B. K. Ostafiychuk, R. P. Lisovsky, V. V. Moklyak, A. B. Hrubiak, I. I. Hryhoruk, and Al-Saedi Abdul Halek Zamil
«Plate-Like LiFePO4 Nanoparticles: Synthesis, Structure, Electrochemistry»
675–686 (2017)

PACS numbers: 61.05.cp, 61.05.Qr, 68.37.Lp, 81.07.-b, 81.16.-c, 82.45.Yz, 82.47.Aa

Lithium iron phosphate plate-like particles of 100–150 nm sizes and to 10 nm thickness have been obtained by hydrothermal synthesis. It has been aim to investigate influence of ethylene glycol relative content and reaction medium temperature on the obtained-materials’ phase composition, crystalline and magnetic microstructure, surface condition and electrical properties. As determined, there is correlation between the materials’ morphology and their electrochemical properties. The reducing of a particle size and agglomeration degree leads to specific capacity growing for lithium power sources with cathodes based on synthesized materials.


Key words: lithium iron phosphate, nanoparticles, morphology, conductivity, cathode, lithium power sources.

https://doi.org/10.15407/nnn.15.04.0675

REFERENCES

1. A. Kumar, R. Thomas, N. K. Karan, J. J. Saavedra-Arias, M. K. Singh, S. B. Majumder, and R. S. Katiyar, J. Nanotechnol., 2009, (2009): ID 176517.
https://doi.org/10.1155/2009/176517
2. M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, J. Power Sources, 195, No. 24: 7904 (2010).
https://doi.org/10.1016/j.jpowsour.2010.06.060
3. G. T.-K. Fey, Y. G. Chen, and H.-M. Kao, J. Power Sources, 189, No. 1: 169 (2009).
https://doi.org/10.1016/j.jpowsour.2008.10.016
4. G. K. P. Dathar, D. Sheppard, K. J. Stevenson, and G. Henkelman, Chem. Mater., 23, No. 17: 4032 (2011).
https://doi.org/10.1021/cm201604g
5. C. R. Sides, F. Croce, V. Y. Young, C. R. Martin, and B. Scrosati, Electrochem. Solid-State Lett., 8, No. 9: A484 (2005).
https://doi.org/10.1149/1.1999916
6. B. Kang and G. Ceder, Nature, 458: 190 (2009).
https://doi.org/10.1038/nature07853
7. A. Yamada, S. C. Chung, and K. Hinokuma, J. Electrochem. Soc., 148, No. 3: A224 (2001).
https://doi.org/10.1149/1.1348257
8. H. C. Kang, D. K. Jun, B. Jin, E. M. Jin, K. H. Park, H. B. Gu, and K. W. Kim, J. Power Sources, 179, No. 1: 340 (2008).
https://doi.org/10.1016/j.jpowsour.2007.12.093
9. S. Beninati, L. Damen, and M. Mastragostino, J. Electrochem. Soc., 194, No. 2: 1094 (2009).
https://doi.org/10.1016/j.jpowsour.2009.06.035
10. Z. Xu, L. Xu, Q. Lai, and X. Ji, Mater. Chem. Phys., 105, No. 1: 80 (2007).
https://doi.org/10.1016/j.matchemphys.2007.04.039
11. B. Pei, H. Yao, W. Zhang, and Z. Yang, J. Electrochem. Soc., 220: 317 (2012).
https://doi.org/10.1016/j.jpowsour.2012.07.128
12. V. Kotsyubynsky, A. S. A. H. Zamil, V. Moklyak, and R. Lisovsky, 2014 IEEE International Conference on Oxide Materials for Electronic Engineering-OMEE 2014 (Lviv, 26-30 May, 2014), p. 100.
https://doi.org/10.1109/OMEE.2014.6912359
13. J. Rodriguez-Carvajal, Newsletter, 26: 12 (2001).
14. V. A. Streltsov, E. L. Belokoneva, V. G. Tsirelson, and N. K. Hansen, Acta Crystallogr. Sect. B: Struct. Sci., 49, No. 2: 147 (1993).
https://doi.org/10.1107/S0108768192004701
15. K. Hirose, T. Honma, Y. Doi, Y. Hinatsu, and T. Komatsu, Solid State Commun., 146, No. 5: 273 (2008).
https://doi.org/10.1016/j.ssc.2008.02.013
16. W. Kraus and G. Nolze, J. Appl. Crystallogr., 29, No. 3: 301 (1996).
https://doi.org/10.1107/S0021889895014920
17. K. Kanamura, S. Koizumi, and K. Dokko, J. Mater. Sci., 43, No. 7: 2138 (2008).
https://doi.org/10.1007/s10853-007-2011-1
18. K. Zaghib, A. Mauger, F. Gendron, and C. M. Julien, Chem. Mater., 20, No. 2: 462 (2007).
https://doi.org/10.1021/cm7027993
19. J. Chen and M. S. Whittingham, Electrochem. Commun., 8, No. 5: 855 (2006).
https://doi.org/10.1016/j.elecom.2006.03.021
20. W. Porcher, P. Moreau, B. Lestriez, S. Jouanneau, F. Le Cras, and D. Guyomard, Ionics, 14, No. 6: 583 (2008).
https://doi.org/10.1007/s11581-008-0215-2
21. K. Bazzi, M. Nazri, V. M. Naik, V. K. Garg, A. C. Oliveira, P. P. Vaishnava, and R. Naik, J. Power Sources, 306: 17 (2016).
https://doi.org/10.1016/j.jpowsour.2015.11.086
22. J. K. Lee, H. W. Park, H. W. Choi, J. E. Kim, S. J. Kim, and Y. S. Yang, J. Korean Phys. Soc., 47: S267 (2005).
23. B. Louati, M. Gargouri, K. Guidara, and T. Mhiri, J. Phys. Chem. Solids, 66, No. 5: 762 (2005).
https://doi.org/10.1016/j.jpcs.2004.09.011
24. A. N. Papathanassiou, I. Sakellis, and J. Grammatikakis, Appl. Phys. Lett., 91, No. 12: 122911 (2007); doi: 10.1063/1.2779255.
https://doi.org/10.1063/1.2779255
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement