Issues

 / 

2017

 / 

Vol. 15 / 

issue 4

 



Download paper in PDF

V. O. Kotsyubynsky, A. B. Hrubiak, B. K. Ostafiychuk, M. A. Hodlevska, S. ². Vorobiov, V. V. Moklyak, and S. V. Fedorchenko
«Photocatalytic Properties of Anatase/Brookite Nanocomposite»
663–674 (2017)

PACS numbers: 68.37.Lp, 78.40.Ha, 78.67.Sc, 81.05.Je, 81.16.Pr, 81.65.Mq, 82.65.+r

The photocatalytic properties of hydrothermally obtained anatase/brookite nanocomposite are studied. The influence of phase composition, structure, morphology, and optical characteristics of synthesized materials on their photocatalytic characteristics is investigated. Methylene blue and formaldehyde photooxidation reactions are analysed. The maximal photocatalytic activity in the case of methylene blue oxidation is detected for material with the highest brookite content (93 mass.%) with particles of complex morphology. The anatase/brookite composite (with the phase mass ratio 3:1) has the highest activity for formaldehyde aqueous-solution destruction as a result of both the separation-efficiency increase for photogenerated charge carriers and the quantum-yield enhancement as a consequence of the anatase/brookite phase boundaries’ presence within the bulk of the one particle.


Key words: titanium dioxide, anatase, brookite, photocatalyst, methylene blue, formaldehyde.

https://doi.org/10.15407/nnn.15.04.0663

REFERENCES

1. U. I. Gaya and A. H. Abdullah, J. Photochem. Photobiol. C, 9, No. 1: 1 (2008).
2. U. G. Akpan and B. H. Hameed, J. Hazard. Mater., 170, No. 2: 520 (2009).
https://doi.org/10.1016/j.jhazmat.2009.05.039
3. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, and M. H. Entezari, Appl. Catal. B, 125: 3319 (2012).
https://doi.org/10.1016/j.apcatb.2012.05.036
4. B. Ohtani, O. O. Prieto-Mahaney, D. Li, and R. Abe, J. Photochem. Photobiol. A, 216, No. 2: 179 (2010).
https://doi.org/10.1016/j.jphotochem.2010.07.024
5. Z. Li, S. Cong, and Y. Xu, ACS Catalysis, 4, No. 9: 3273 (2014).
https://doi.org/10.1021/cs500785z
6. T. Ozawa, M. Iwasaki, H. Tada, T. Akita, K. Tanaka, and S. Ito, Colloid and Interface Science, 281, No. 2: 510 (2005).
https://doi.org/10.1016/j.jcis.2004.08.137
7. M. G. Mizilevska, V. O. Kotsyubynsky, and O. H. Tadeush, J. Nano- Electron. Phys., 7, No. 1: 1028-1 (2015).
8. V. O. Kotsyubynsky, M. G. Mizilevska, A. B. Hrubiak, S. I. Vorobiov, M. M. Kyzyshyn, and V. M. Sachko, J. Nano- Electron. Phys., 9, No. 2: 2009-1 (2017).
https://doi.org/10.21272/jnep.9(2).02009
9. J. Pascual, J. Camassel, and H. Mathieu, Phys. Rev. B, 18, No. 10: 5606 (1978).
https://doi.org/10.1103/PhysRevB.18.5606
10. N. Serpone, D. Lawless, and R. Khairutdinov, Phys. Chem., 99, No. 45: 16646 (1995).
https://doi.org/10.1021/j100045a026
11. M. Koelsch, S. Cassaignon, J. Guillemoles, and J. Jolivet, Thin Solid Films, 403-404, No. 1: 312 (2002).
https://doi.org/10.1016/S0040-6090(01)01509-7
12. A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, and L. Palmisano, Colloids Surf. A, 317, Nos. 1-3: 366 (2008).
https://doi.org/10.1016/j.colsurfa.2007.11.005
13. R. Zallen and M. P. Moret, Solid State Commun., 137, No. 3: 154 (2006).
https://doi.org/10.1016/j.ssc.2005.10.024
14. R. K. Madhusudan, S. V. Manorama, and A. R. Reddy, Mater. Chem. Phys., 78, No. 1: 239 (2003).
https://doi.org/10.1016/S0254-0584(02)00343-7
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement