Issues

 / 

2017

 / 

Vol. 15 / 

Issue 3

 



Download paper (in PDF)

A. A. Konchyts, B. D. Shanina, I. B. Yanchuk, S. V. Krasnovyd
«EPR Diagnostics of Hemostyptics Based on Polysaccharides»
573–586 (2017)

PACS numbers: 61.82.Pv, 76.30.Rn, 82.35.Pq, 87.15.Pc, 87.53.Ay, 87.64.kh, 87.80.Lg

Two types of the paramagnetic defects, PC1 and PC2, induced due to breaking carbon bonds in the beta-irradiated biopolymer chitosan are found. The nature of defects, their parameters, and kinetics of the accumulation with increasing dose of the irradiation, D, are determined. The kinetic parameters of the process are estimated due to the comparison of experimental data with theoretical calculations. The effect of the self-healing material, namely, the decrease of the PC concentration with time after the irradiation, is revealed. As shown, the rates of processes depend on concentrations of the shallow and deep traps for electrons. The recovery processes in the chitosan samples with a more perfect crystallinity of a structure are much slower.


Key words: chitosan, chitin, paramagnetic centres.

https://doi.org/10.15407/nnn.15.03.0573

REFERENCES

1. E. Szymanska and K. Winnicka, Marine Drugs, 13: 1819 (2015).
https://doi.org/10.3390/md13041819
2. H. Yamamoto and M. Amaika, Macromolecules, 30: 3936 (1997).
https://doi.org/10.1021/ma961766f
3. S. C. Richardson, H. V. Kolbe, and R. Duncan, Int. J. Pharm., 178: 231 (1999).
https://doi.org/10.1016/S0378-5173(98)00378-0
4. S. Dumitriu, M. I. Popa, A. Cringu, and A. Stratone, Colloid. Polym. Sci., 267: 595 (1989).
https://doi.org/10.1007/BF01410436
5. R. Marguerite, Prog. Polym. Sci., 31: 603 (2006).
6. C. C. Peniche, L. W. Alwarez, and M. W. Arguelles, J. Appl. Polym. Sci., 46: 1147 (1987).
7. W. S. W. Ngah, S. A. Ghani, and A. Kamari, Bioresour. Technol., 96: 443 (2005).
https://doi.org/10.1016/j.biortech.2004.05.022
8. N. R. Sudarshan, D. G. Hoover, and D. Knorr, Food Biotechnol., 6: 257 (1992).
https://doi.org/10.1080/08905439209549838
9. W. Pasanphan, G. R. Buettner, and S. Chirachanchai, Carbohydrate Research, 345: 132 (2010).
https://doi.org/10.1016/j.carres.2009.09.038
10. J. Kumirska, M. X. Weinhold, J. Thoming, and P. Stepnowski, Polymers, 3: 1875 (2011).
https://doi.org/10.3390/polym3041875
11. G. A. F. Roberts, Polymers, 3: 1875 (2007).
12. U. Gryczka, D. Dondi, A.G. Chmielewski, W. Migdal, A. Buttafava, and A. Faucitano, Radiation Physics and Chemistry, 78: 543 (2009).
https://doi.org/10.1016/j.radphyschem.2009.03.081
13. A. G. Chmielewski, W. Migdal, J. Swietoslawski, U. Jakubaszek, and T. Tarnowski, Radiat. Phys. Chem., 76: 1840 (2007).
https://doi.org/10.1016/j.radphyschem.2007.04.013
14. L. I. Wenjun, J. Xuan, X. Peihua, and C. Shiming, Chin. Scince Bull., 47: 887 (2002).
15. J. Y. Je and S. Kwon, Bioorganic and Medicinal Chem. Letters, 16: 1884 (2006).
https://doi.org/10.1016/j.bmcl.2005.12.077
16. A. Riccardo, A. Muzzarell, F. Tanfani, G. Scarpini, and G. Maria, Biochem. and Biophys. Res. Com., 89: 706 (1979).
https://doi.org/10.1016/0006-291X(79)90687-9
17. C. P. Poole, Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques. 2nd ed. (New York: Dover: 1997).
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement