Issues

 / 

2017

 / 

Vol. 15 / 

Issue 3

 



Download paper (in PDF)

N. M. Rezanova, B. M. Savchenko, V. P. Plavan, V. Yu. Bulakh, N. V. Sova
«Regularities of Fabrication of Nanofilled Polymeric Materials with Matrix–Fibrillar Structure»
559–571 (2017)

PACS numbers: 62.23.-c, 81.05.Lg, 81.07.Pr, 81.16.Fg, 82.35.Np, 83.60.-a, 83.80.-k

The influence of a joint action of both nanofiller and compatibilizer on rheological properties, interfacial phenomena, and morphology of the polypropylene/copolyamide (PP/CPA) mixtures is studied as well as mechanical characteristics of monothreads formed from these mixtures. As shown, the addition of carbon nanotubes (CNT) and polypropylene with grafted maleic anhydride (PPgMA) slightly reduces the elasticity of melt of the initial PP and increases its viscosity, eta; with a joint addition of nanoadditives and the compatibilizer, eta is increased by 2 times. Due to this, in modified compositions, magnitudes of ratio of viscosities of fibre-forming and matrix polymers and their elasticities are close to 1 that contributes to better PP dispersion and forming of PP microfibers in the matrix of co-polyamide. As established, the introduction of CNT and PPgMA to the PP/CPA mixture effects on the regularities of decomposition of liquid PP jets (microfibers) in the CPA matrix. The maximum effect is achieved due to a joint action of nanoadditive and compatibilizer—surface tension, gamma(alpha beta), falls from 2.36 mN/m for the initial mixture to 0.99 mN/m for the modified one. As shown, there is the possibility of regulation of the matrix–fibrillar structure of extrudates for three- and four-component compositions by both reducing the value of gamma(alpha beta) and increasing the stability of PP microfibers. In nanofilled-compatibilized mixtures, the process of fibre-formation of PP in the CPA matrix is improving—the average diameter of microfibers is reduced from 2.6 mm (for the original mixture) to 1.5 mm, their mass fraction is increased, and the number of films is sharply decreased. As found, at simultaneous introduction of modifiers, their synergistic action manifests itself in minimization of both interfacial tension and average diameter of microfibers. The modified mixtures are characterized by the increased ability to longitudinal strain, compared with the original mixture, providing a stable processing into the fibres and films with the active equipment. Maximum strength and resistance to deformation are observed for monothreads formed from four-component systems due to formation of the most perfect morphology, filling with carbon nanotubes, and growth of adhesion between components in the interphase area.


Key words: polymer mixtures, nanoadditive, compatibilizer, morphology, monothreads.

https://doi.org/10.15407/nnn.15.03.0559

REFERENCES

1. C. P. Papadopulou and N. K. Kalfoglou, Polymer, 41: 2543 (2000).
https://doi.org/10.1016/S0032-3861(99)00442-5
2. W. Li, A. K. Schlarb, and M. Evstatiev, J. Appl. Polym. Sci., 113: 1471 (2009).
https://doi.org/10.1002/app.29993
3. W. Li, A. K. Schlarb, and M. Evstatiev, J. Appl. Polym. Sci., 113: 3300 (2009).
https://doi.org/10.1002/app.30290
4. W. Li, J. Karger-Koksis, and A. K. Schlarb, Macromol. Mater. Eng., 294: 582 (2009).
https://doi.org/10.1002/mame.200900123
5. L. Sangroniz, J. K. Palacios, M. Fernandez, J. I. Eguiazabal, A. Santamaria, and A. J. Muller, European Polym. J., 83: 10 (2016).
https://doi.org/10.1016/j.eurpolymj.2016.07.026
6. Vu Anh Doan and M. Yamaguchi, Recent Res. Devel. Mat. Sci., 10: 59 (2013).
7. N. M. Rezanova, V. P. Plavan, V. G. Rezanova, and V. M. Bohatyrov, Vlakna a Textil, 4: 3 (2016).
8. M. V. Tsebrenko, V. G. Rezanova, and I. A. Tsebrenko, Chem. & Chem. Technol., 4, No. 3: 253 (2010).
9. T. P. Russell, Curr. Opin. in Colloid and Interface Sci., 1, No. 1: 107 (1996).
https://doi.org/10.1016/S1359-0294(96)80051-3
10. D. Gersappe, D. Irvine, A. C. Balazs, Y. Liu, J. Sokolov, M. Rafailovich, S. Schwarz, and D. G. Peiffer, Science, 265: 1072 (1994).
https://doi.org/10.1126/science.265.5175.1072
11. D. Shi, Z. Ke, Y. Gao, and J. Wu, Macromolecules, 35: 8005 (2002).
https://doi.org/10.1021/ma020595d
12. H. Xiu, H. W. Bai, C. M. Huang, C. L. Xu, X. Y. Li, and Q. Fu, eXPRESS Polymer Letters, 7, No. 3: 261 (2013).
https://doi.org/10.3144/expresspolymlett.2013.24
13. N. M. Rezanova, V. P. Plavan, V. G. Rezanova, Yu. O. Budash, and V. M. Bogatyryov, Polimernyi Zhurnal, 38, No. 3: 218 (2016) (in Ukrainian).
14. M. S. Luna and G. Filippone European Polym. J., 79: 198 (2016).
https://doi.org/10.1016/j.eurpolymj.2016.02.023
15. W. S. Chow and Z. A. Mohd Ishak, eXPRESS Polymer Letters, 9, No. 3: 21 (2015).
16. L. Utracki, Z. Bakerdjiane, and M. Kamal, J. Appl. Polym. Sci., 19, No. 2: 481 (1975).
https://doi.org/10.1002/app.1975.070190213
17. Polimernyye Smesi. Tom 1: Sistematika [Polymeric Mixtures. Vol. 1: Systematics] (Eds. D. R. Pol and K. B. Baklell) (Sankt-Petersburg: Nauchnyye Osnovy i Tekhnologii: 2009) (Russian translation).
18. C. D. Han and K. Funatsu, J. Rheol., 22, No. 2: 113 (1978).
https://doi.org/10.1122/1.549475
19. C. D. Han, Multiphase Flow in Polymer Processing (New York: Academic Press: 1981).
20. R. Bahrami, T. I. Lobling, H. Schmalz, A. H. E. Muller, and V. Altstadt, Polymer, 109: 229 (2017).
https://doi.org/10.1016/j.polymer.2016.12.044
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement