Issues

 / 

2017

 / 

Vol. 15 / 

Issue 3

 



Download paper (in PDF)

I. M. Bordun, M. M. Sadova, A. K. Borysiuk, Yu. O. Kulyk
«Investigation of the Structure of Activated Carbon from Plant Material by Means of X-Ray Diffractometry and Small-Angle Scattering»
517–533 (2017)

PACS numbers: 61.05.ñf, 61.05.cp, 61.43.Gt, 68.35.Ct, 68.37.Hk, 81.05.U-, 87.85.J-

The structural characteristics of activated carbon, source materials for which were corn-processing waste—cobs, leaves and stems, and dry beet pulp, are investigated. As shown, after carbonization and activation with water vapour, crushed carbon is sufficiently uniform regardless of the structure of the raw. As established, all the observed x-ray diffraction broad diffuse maxima are similar in position to the reflections of polycrystalline graphite. Diffraction analysis reveals the presence of nanostructured phases. Their characteristic dimensions are calculated by the Selyakov–Scherrer formula. As revealed, the investigated carbon has microheterogeneous structure formed by the graphite-like and graphene nanocrystals dispersed inside the amorphous phase. The main contribution to the crystal-like structure is given by the three-dimensional graphite-like crystallites, which share is from 75% in an activated carbon of beet pulp to 82% in a carbon of corn stalks. The porous structure of the investigated carbon is calculated by analysing small-angle x-ray scattering spectra. The calculation of pores’ distribution functions in the investigated materials is carried out within the model of the polydisperse spherical particles. As found, these functions for the activated carbon of corn stalks and cobs are characterized by a distinct maximum at r=4.7 nm and r=5.2 nm, respectively, and at r=3.8 nm, for the carbon of beet pulp. The pores’ distribution for the activated carbon of corn leaves has bimodal nature with main maximum expanding and splitting on two maxima at r=2.5 nm and r=5.4 nm. The specific surface area of activated carbon is calculated using the Porod law. As established, the carbon of corn stalks is characterized by a specific surface area of 617 m2/g, of corn leaves, 409 m2/g, of beet pulp, 342 m2/g, and of corncobs, 165 m2/g.


Key words: activated carbon, x-ray diffraction, small-angle scattering, nanocrystallites, porous structure.

https://doi.org/10.15407/nnn.15.03.0517

REFERENCES

1. K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani, and S. Pattabhi, Bioresour. Technol., 87, No. 1: 129 (2003).
https://doi.org/10.1016/S0960-8524(02)00201-8
2. O. Ioannidou and A. Zabaniotou, Renew. Sust. Energ. Rev., 11, No. 9: 1966 (2007).
https://doi.org/10.1016/j.rser.2006.03.013
3. P. Pragya, S. Shipal, and Y. Maheshkumar, Res. J. Chem. Sci., 3, No. 12: 12 (2013).
4. M. H. Oliveira Jr., P. F. Barbieri, I. L. Torriani, and F. C. Marques, Thin Solid Films, 516, Nos. 2-4: 316 (2007).
https://doi.org/10.1016/j.tsf.2007.06.081
5. N. D. Lysenko, O. V. Shvets', P. S. Yaremov, and V. G. Il'yin, Nanosistemi, Nanomateriali, Nanotehnologii, 7, No. 3: 727 (2009) (in Ukrainian).
6. G. T. K. Fey, Y. D. Cho, C. L. Chen, K. P. Huang, Y. C. Lin, T. P. Kumar, and S. H. Chan, Int. J. Chem. Eng. Appl., 2, No. 1: 20 (2011).
7. I. F. Bugaenko and V. I. Tuzhilkin, Obshchaya Tekhnologiya Otrasli. Nauchnyye Osnovy Tekhnologii Sakhara (Sankt-Petersburg: GIORD: 2007) (in Russian).
8. T. Liu, R. Luo, W. Qiao, S.-H. Yoon, and I. Mochida, Electrochim. Acta, 55, No. 5: 1696 (2010).
https://doi.org/10.1016/j.electacta.2009.10.051
9. V. I. Mandzyuk, Yu. O. Kulik, N. I. Nagirna, and I. P. Yaremiy, FKhTT, 13, No. 3: 616 (2012) (in Ukrainian).
10. A. I. Kitaigorodski, Rentgenostrukturnyi Analiz Melkokristallicheskikh i Amorfnykh Tel (Moscow-Leningrad: Izd-vo Tekhniko-Teoret. Lit.: 1952) (in Russian).
11. L. S. Parfen'eva, B. I. Smirnov, I. A. Smirnov D. Wlosewicz, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, F. M. Varela-Feria, and A. I. Krivchikov, Fiz. Tverd. Tela, 48, No. 11: 1938 (2006) (in Russian).
https://doi.org/10.1134/S1063783406110035
12. P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc., 18, No. 14: 1961 (1998).
https://doi.org/10.1016/S0955-2219(98)00156-3
13. C. E. Byrne and D. C. Nagle, Carbon, 35, No. 2: 267 (1997).
https://doi.org/10.1016/S0008-6223(96)00135-2
14. A. K. Kercher and D. C. Nagle, Carbon, 41, No. 1: 15 (2003).
https://doi.org/10.1016/S0008-6223(02)00261-0
15. D. I. Svergun and L. A. Feigin, Rentgenovskoe i Neitronnoye Malouglovoye Rasseyanie (Moscow: Nauka: 1986) (in Russian).
16. B. Ya. Vengrin, I. I. Grigorchak, Yu. O. Kulik, S. I. Mudryi, and R. Ya. Shvets', FKhTT, 8, No. 2: 418 (2007) (in Ukrainian).
17. V. I. Mandzyuk, N. I. Nagirna, Yu. O. Kulik, R. P. Lisovs'kyi, Nauk. Visnyk ChNU, 2, No. 1: 85 (2012) (in Ukrainian).
18. G. Porod, Colloid Polym. Sci., 124, No. 2: 83 (1951).
https://doi.org/10.1007/BF01512792
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement