Issues

 / 

2017

 / 

Vol. 15 / 

Issue 3

 



Ñêà÷àòü ïîëíóþ âåðñèþ ñòàòüè (â PDF ôîðìàòå)

V. H. Kasiyanenko, L. I. Karbivska, N. A. Kurgan, E. Ya. Kuznetsova, V. L. Karbivskyy
«Physical Properties of the Virus–Inorganic Hybrid Complexes TMV–Au»
447–476 (2017)

PACS numbers: 61.46.Bc, 68.37.Lp, 78.67.-n, 81.07.Pr, 81.16.Dn, 87.64.Dz, 87.85.jf

The physical and physicochemical properties as well as morphology of nanowires fabricated from the tobacco mosaic virus (TMV) and nanoparticles of noble metals are studied by the methods of microscopy and spectroscopy with atomic resolution. The genetic shell programmability of TMV allows fabricating derivatives with high selectivity to inorganic materials or surface substrates. The latter fact allows obtaining efficient self-assembly of nanoscale biostructures for functional microdevices. Optical properties of nanocomplexes of the TMV–gold nanoparticles are studied. The optical activity of complex TMV–Au with maximum at 540 nm is revealed. The dependence of intensity of the absorption spectra on the optical polarization orientation is observed. The presence of a circular dichroism opens up possibilities of using TMV–Au complexes for the creation of metamaterials. The electronic structure and properties of nanocomposites is investigated by the scanning tunnelling spectroscopy method. As found, the spontaneous and induced transitions into a state of relatively high electrical conductivity appear in the range from 0 to 6 volts. As shown, the interaction of the studied plant viruses with antibodies leads to an absence of both aggregation and clustering of composite nanoparticles. It is revealed the presence of chemical gold surface destruction after removing of the TMV nanoparticles from the gold surface. The proposed technique of the nanowires’ synthesis allows developing of the leading-edge domestic technologies of fabrication of the plant-virus-based nanomaterials.


Key words: tobacco mosaic virus, organic-inorganic hybrid nanostructures, self-assembly, probe microscopy, atomic force microscopy, nanotechnologies.

https://doi.org/10.15407/nnn.15.03.0447

REFERENCES

1. M. Sarikaya, C. Tamerler, and A. Jen, Nature Materials, 2: 577 (2003).
https://doi.org/10.1038/nmat964
2. K. Kordas, A. E. Pap, J. Vahakangas, A. Uusimaki, and S. Leppavuori, Appl. Surf. Sci., 252: 1471 (2005).
https://doi.org/10.1016/j.apsusc.2005.02.120
3. J. H. Wang, P. Y. Su, M. Y. Lu, L. J. Chen, C. H. Chen, and C. J. Chu, Electrochem. Solid-State Lett., 8: 9 (2005).
https://doi.org/10.1149/1.1836112
4. S. Sun, D. Yang, G. Zhang, E. Sacher, and J.-P. Dodelet, Chem. Mater., 19: 6376 (2007).
https://doi.org/10.1021/cm7022949
5. B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. Yu, and D. Wang, Nano Lett., 7: 323 (2007).
https://doi.org/10.1021/nl062410c
6. L. Durrer, T. Helbling, C. Zenger, A. Jungen, C. Stampfer, and C. Hierold, Sens. Actuators B, 132: 485 (2008).
https://doi.org/10.1016/j.snb.2007.11.007
7. D. Q. Zhang, J. Yang, and Y. Li, Small., 9: 1284 (2013).
https://doi.org/10.1002/smll.201202986
8. X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, Nano Lett., 8: 3781 (2008).
https://doi.org/10.1021/nl802096a
9. T. Ghoshal, S. Biswas, S. Kar, A. Dev, S. Chakrabarti, and S. Chaudhuri, Nanotechnology, 19: 065606 (2008).
https://doi.org/10.1088/0957-4484/19/6/065606
10. V. L. Karbivskiy and T. A. Korniyuk, Ukrainica Bioorganica Acta., 2: 7 (2009).
11. Z. Dengand and C. Mao, Nano Lett., 3: 1545 (2003).
https://doi.org/10.1021/nl034720q
12. Y. Ma, J. Zhang, G. Zhang, and H. He, J. Am. Chem. Soc., 126: 7097 (2004).
https://doi.org/10.1021/ja039621t
13. Y. Hashimoto, Y. Matsuo, and K. Ijiro, Chem. Lett., 34: 112 (2005).
https://doi.org/10.1246/cl.2005.112
14. Q. Gu, C. Cheng, T. Gonela, S. Suryanarayanan, S. Anabathula, K. Dai, and D. T. Haynie, Nanotechnology, 17: R14 (2006).
https://doi.org/10.1088/0957-4484/17/1/R02
15. H. Kudo and M. Fujihira, IEEETrans. Nanotechnol., 5: 90 (2006).
https://doi.org/10.1109/TNANO.2006.869691
16. J. M. Kinsella and A. Ivanisevic, Langmuir, 23: 3886 (2007).
https://doi.org/10.1021/la0628571
17. M. Reches and E. Gazit, Science, 300: 625 (2003).
https://doi.org/10.1126/science.1082387
18. B. Zhang, S. A. Davis, N. H. Mendelson, and S. Mann, Chem. Commun., 781 (2000).
https://doi.org/10.1039/b001528h
19. R. Mogul, J. J. G. Kelly, M. L. Cable, and A. F. Hebard, Mater. Lett., 60: 19 (2005).
https://doi.org/10.1016/j.matlet.2005.07.066
20. X. Liang, J. Liu, S. Li, Y. Mei, and W. Yanqing, Mater. Lett., 62: 2999 (2008).
https://doi.org/10.1016/j.matlet.2008.01.094
21. M. T. Kumara, B. C. Tripp, and S. Muralidharan, J. Phys. Chem. C, 111: 5276 (2007).
https://doi.org/10.1021/jp067479n
22. D. J. Evans, J. Mater. Chem., 18: 3746 (2008).
https://doi.org/10.1039/b804305a
23. K. Namba, R. K. Pattanayek, and G. R. Stubbs, J. Mol. Biol., 208: 307 (1989).
https://doi.org/10.1016/0022-2836(89)90391-4
24. R. K. Pattanayek and G. R. Stubbs, J. Mol. Biol., 228: 516 (1992).
https://doi.org/10.1016/0022-2836(92)90839-C
25. H. Wang and G. R. Stubbs, J. Mol. Biol., 239: 371 (1994).
https://doi.org/10.1006/jmbi.1994.1379
26. H. Wang, J. N. Culver, and G. R. Stubbs, J. Mol. Biol., 269: 769 (1997).
https://doi.org/10.1006/jmbi.1997.1048
27. A. Durham, J. Finch, and A. Klug, Nature, 229: 37 (1971).
https://doi.org/10.1038/newbio229037a0
28. W. O. Dawson, D. L. Beck, D. A. Knorr, and G. L. Granthan, Proc. Natl. Acad. Sci. U.S.A., 83: 1832 (1986).
https://doi.org/10.1073/pnas.83.6.1832
29. J. N. Culver, W. O. Dawson, K. Plonk, and G. Stubbs, Virology, 206: 724 (1995).
https://doi.org/10.1016/S0042-6822(95)80096-4
30. J. N. Culver, Annu. Rev. Phytopathol., 40: 287 (2002).
https://doi.org/10.1146/annurev.phyto.40.120301.102400
31. K. Gerasopoulos, M. McCarthy, P. Banerjee, X. Fan, J. N. Culver, and R. Ghodssi, Nanotechnology, 21: 055304 (2010).
https://doi.org/10.1088/0957-4484/21/5/055304
32. E. Royston, S.-Y. Lee, J. N. Culver, and M. T. Harris, J. Colloid Interface Sci., 298: 706 (2006).
https://doi.org/10.1016/j.jcis.2005.12.068
33. H. Yi et al., Nano Lett., 5: 1931 (2005).
https://doi.org/10.1021/nl051254r
34. K. Gerasopoulos, X. Chen, J. Culver, C. Wang, and R. Ghodssi, Chem. Commun., 46: 7349 (2010).
https://doi.org/10.1039/c0cc01689f
35. K. Gerasopoulos, M. McCarthy, E. Royston, J. N. Culver, and R. Ghodssi, J. Micromech. Microeng., 18: 104003 (2008).
https://doi.org/10.1088/0960-1317/18/10/104003
36. Niu Zhongwei et al., Nano Letters, 12: 3729 (2007).
https://doi.org/10.1021/nl072134h
37. Jung-Sun Lim et al., Journal of Nanomaterials, 4: 620505 (2010).
38. E. Dujardin et al., Nano Letters, 3: 413 (2003).
https://doi.org/10.1021/nl034004o
39. M. A. Correa-Duarte et al., Angew. Chem. Int. Ed., 44: 4375 (2005).
https://doi.org/10.1002/anie.200500581
40. H. Wang et al., J. Am. Chem. Soc., 129: 12924 (2007).
https://doi.org/10.1021/ja075587x
41. K. M. Bromley et al., J. Mater. Chem., 18: 4796, (2008).
https://doi.org/10.1039/b809585j
42 J. Fang, Encyclopedia of Nanoscience & Nanotechnology, 5: 3953 (2004).
43. L. Y. Zhang et al., Nano-Micro Letters, 1: 49 (2009).
https://doi.org/10.1007/BF03353607
44. T.-Ch. Tseng et al., Nature Chemistry, 2: 374 (2010).
45. M. Sumser, A. M. Knez, M. Sumser, A. M. Bittner, C. Wege, H. Jeske, T. P. Martin, and K. Kern, Adv. Funct. Mater., 14, No. 2: 116 (2004).
https://doi.org/10.1002/adfm.200304376
46. M. Knez, M. Sumser, A. M. Bittner, C. Wege, H. Jeske, T. P. Martin, and K. Kern, Adv. Funct. Mater., 14, No. 2: 116 (2004).
https://doi.org/10.1002/adfm.200304376
47. E. Royston, A. Ghosh, P. Kofinas, M. T. Harris, and J. N. Culver, Langmuir, 24, No. 3: 906 (2008).
https://doi.org/10.1021/la7016424
48. A. K. Manocchi, S. Seifert, B. Lee, and H. Yi, Langmuir, 26, No. 10: 7516 (2010).
https://doi.org/10.1021/la904324h
49. M. Knez, A. Kadri, C. Wege, U. Gesele, H. Jeske, and K. O. Nielsch, Nano Lett., 6, No. 6: 1172 (2006).
https://doi.org/10.1021/nl060413j
50. P. Atanasova, D. Rothenstein, J. J. Schneider, R. C. Hoffmann, S. Dilfer, S. Eiben, C. Wege, H. Jeske, and J. Bill, Adv. Mater., 23: 4918 (2011).
https://doi.org/10.1002/adma.201102900
51. M. A. Bruckman, C. M. Soto, H. McDowell, J. L. Liu, B. R. Ratna, K. V. Korpany, O. K. Zahr, and A. S. Blum, ACS Nano, 5, No. 3: 1606 (2011).
https://doi.org/10.1021/nn1025719
52. S. P. Wargacki, B. Pate, and R. A. Vaia, Langmuir, 24, No. 10: 5439 (2008).
https://doi.org/10.1021/la7040778
53. A. Mueller, F. J. Eber, C. Azucena, A. Petershans, A. M. Bittner, H. Gliemann, H. Jeske, and C. Wege, ACS Nano, 5, No. 6: 4512 (2011).
https://doi.org/10.1021/nn103557s
54. Circular Dichroism: Principles and Applications (Eds. N. Berova, K. Nakanishi, and R. W. Woody) (New York: Wiley-VCH: 2000).
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement