Issues

 / 

2017

 / 

Vol. 15 / 

Issue 3

 



Download paper (in PDF)

M. S. Brodyn, V. I. Rudenko, V. R. Liakhovetskyi, T. G. Beynik, N. A. Matveevska
«Spectral and Nonlinear Optical Properties of Mono- and Multilayer Films Based on Star-Shaped Nanoparticles Planted on the Glass Substrates»
431–446 (2017)

PACS numbers: 42.65.-k, 42.70.Mp, 61.46.-w, 68.37.-d, 68.65.Ac, 73.20.Mf, 78.20.Ci, 78.67.Sc

Spectral and nonlinear optical properties of mono- and multilayer films based on the gold multiprong nanostars are studied. As shown, the position of localized plasmon resonance (LPR) maximum varies in the range of 530–570 nm depending on the number of building-up cycles of monolayer films. As revealed for the multilayer films, the LPR band is expanded and shifted toward the long-wavelength part compared to monolayer films. Cubic nonlinear optical properties of monolayer films are also investigated. The obtained relatively high coefficients of optical cubic susceptibility indicate the availability of using such structures in modern optoelectronics devices.


Key words: third-order nonlinearity, nonlinear absorption, Au nanocrystal, 2D-structure, monolayer, plasmon resonance.

https://doi.org/10.15407/nnn.15.03.0431

REFERENCES

1. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science, 302: 419 (2003).
https://doi.org/10.1126/science.1089171
2. A. A. Borshch, M. S. Brodyn, V. R. Lyakhovetsky, V. I. Volkov and R. D. Fedorovich, JETP Letters, 84: 214 (2006).
https://doi.org/10.1134/S0021364006160107
3. M. Brodyn, V. Volkov, V. Lyakhovetsky, V. Rudenko, and V. Styopkin, Appl. Phys. B, 111: 567 (2013).
https://doi.org/10.1007/s00340-013-5374-9
4. M. I. Stockman, Physics Today, 64: 39 (2011).
https://doi.org/10.1063/1.3554315
5. Yi Hua, K. Chandra, D. H. M. Dam, G. P. Wiederrecht, and T. W. Odom, J. Phys. Chem. Lett., 6: 4904 (2015).
https://doi.org/10.1021/acs.jpclett.5b02263
6. X.-L. Liu, J.-H. Wang, Sh. Liang, D.-J. Yang, F. Nan, S.-J. Ding, L. Zhou, Zh.-H. Hao, and Q.-Q. Wang, J. Phys. Chem. C, 118: 9659 (2014).
https://doi.org/10.1021/jp500638u
7. N. A. Matveevska, Yu. V. Yermolayeva, Yu. I. Pazyura, Yu. N. Savin, and A. V. Tolmachov, Nanosistemi, Nanomateriali, Nanotehnologii, 7, Iss. 2: 517 (2009) (in Russian).
8. Ch. J. Doran and S. J. Mc Cormack, Journal of Colloid and Interface Science, 459: 218 (2015).
https://doi.org/10.1016/j.jcis.2015.08.019
9. P. Ndokoye, X. Li, Q. Zhao, T. Li, M. O. Tade, and S. Liu, Journal of Colloid and Interface Science, 462: 341 (2016).
https://doi.org/10.1016/j.jcis.2015.10.007
10. E. S. Kooij, W. Ahmed, C. Hellenthal, H. J. W. Zandvliet, B. Poelsema, Colloids and Surfaces A: Physicochem. Eng. Aspects, 413: 231 (2012).
https://doi.org/10.1016/j.colsurfa.2012.01.041
11. S. A. Canonico-May, K. R. Beavers, M. J. Melvin, A. Alkilany, C. L. Duvall, and J. W. Stone, Journal of Colloid and Interface Science, 463, Iss. 1: 229 (2016).
https://doi.org/10.1016/j.jcis.2015.10.053
12. T. G. Beynik, N. A. Matveevska, M. V. Dobrotvorska, P. V. Mateychenko, M. I. Danilenko, T. O. Cheipesh, D. Yu. Kosyanov, A. A. Vornovskikh, and V. G. Kuryavyi, Nanosistemi, Nanomateriali, Nanotehnologii, 15, No. 3: 417 (2017) (in Russian).
13. B. Can-Uc, R. Rangel-Rojo, L. Rodriguez-Fernandez, and A. Oliver, Opt. Mater. Express, 3: 2012 (2013).
https://doi.org/10.1364/OME.3.002012
14. S. Mohan, J. Lange, H. Graener, and G. Seifert, Opt. Express, 20: 28655 (2012).
https://doi.org/10.1364/OE.20.028655
15. G. Piredda, D. Smith, B. Wendling, and R. Boyd, J. Opt. Soc. Am. B, 25, Iss. 6: 945 (2008).
https://doi.org/10.1364/JOSAB.25.000945
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement