Issues

 / 

2017

 / 

Vol. 15 / 

Issue 3

 



Download paper (in PDF)

E. Sakher, N. Loudjani, M. Benchiheub, S. Belkahla, M. Bououdina
«Microstructure Characterization of Nanocrystalline Ni50Ti50 Alloy Prepared Via Mechanical Alloying Method Using the Rietveld Refinement Method Applied to the X-Ray Diffraction»
401–416 (2017)

PACS numbers: 61.05.cp, 61.43.Gt, 61.68.+n, 68.37.Hk, 81.07.Wx, 81.20.Ev, 81.20.Wk

Using the Rietveld refinement, we analysed the structural evolution of Ni50Ti50 alloy prepared by mechanical alloying method. The elemental Ti and Ni powders are milled during different milling times (0, 1, 3, 6, 24, and 72 hours) in a high-energy planetary ball mill (Pulverisette 7 premium line). The milled powder specimens were characterized with x-ray Philips X,Pert diffractometer equipped with CuKa radiation source (lambda(Cu) = 0.15418 nm). We refined the structure of compounds using the MAUD program, and we found structural parameters such as the atomic positions (x, y, z), symmetry, and a space group. Moreover, microstructural parameters such as the lattice parameters (a, b, c), the average crystallite size L, microstrains (sigma2)1/2, the average number of compacted layers, and the phase percentages were also determined. According to the results, at the initial stages of milling (typically of 1–3 h), the structure consists of Ni-based solid solution [f.c.c.-Ni (Ti)], Ti-based solid solution [h.c.p.-Ti (Ni)], and amorphous phase (=40 wt.%). Based on the data evaluated during milling, the nanocrystalline NiTi-martensite (B19?) and NiTi-austenite (B2) phases are initially formed from the primary materials and from the amorphous phase.


Key words: nanocrystalline materials, mechanical alloying, x-ray diffraction, microstructure, Rietveld refinement.

https://doi.org/10.15407/nnn.15.03.0401

REFERENCES

1. N. Loudjani, M. Benchiheub, and M. Bououdina, J. Supercond Nov. Magn., 29: 2717 (2016).
https://doi.org/10.1007/s10948-016-3541-z
2. M. Akmal, A. Raza, M. Mudasser, M. I. Khan, and M. A. Hussain, Materials Science and Engineering C, 68: 30 (2016).
https://doi.org/10.1016/j.msec.2016.05.092
3. F. Alvarado-Hernandez, O. Jimenez, G. Gonzalez-Castaneda, V. Baltazar-Hernandez, J. Cabezas-Villa, M. Albiter, H. Vergara-Hernandez, and L. Olmos, Transactions of Nonferrous Metals Society of China, 26, Iss. 8: 2126 (2016).
https://doi.org/10.1016/S1003-6326(16)64326-1
4. C. Murugesan, M. Perumal, and G. Chandrasekaran, Physica B, 448: 53 (2014).
https://doi.org/10.1016/j.physb.2014.04.055
5. N. Loudjani, N. Bensebaa, L. Dekhil, S. Alleg, and J. J. Sunol, Journal of Magnetism and Magnetic Materials, 323: 3063 (2011).
https://doi.org/10.1016/j.jmmm.2011.06.059
6. J. P. Oliveira, F. M. Braz Fernandes, N. Schell, and R. M. Miranda, Materials Letters, 171: 273 (2016).
https://doi.org/10.1016/j.matlet.2016.02.107
7. M. Karbasi, M. R. Zamanzad Ghavidel, and A. Nekahi, Materials and Corrosion, 65, Iss. 5: 485 (2014).
https://doi.org/10.1002/maco.201206536
8. C. H. Ng, Nanxi Rao, W. C. Law, G. Xu, T. L. Cheung, F. T. Cheng, X. Wang, and H. C. Man, Surface & Coatings Technology, 309: 59 (2017).
https://doi.org/10.1016/j.surfcoat.2016.11.008
9. J. Sevcikova and M. P. Goldbergova, BioMetals, 30, No. 2: 163 (2017).
https://doi.org/10.1007/s10534-017-0002-5
10. M. Karolus and J. Panek, Journal of Alloys and Compounds, 658: 709 (2016).
https://doi.org/10.1016/j.jallcom.2015.10.286
11. K. Ashvani, S. Devendra, K. Ravi, and K. Davinder, Journal of Alloys and Compounds, 479: 166 (2009).
12. K. Mehrabi, M. Bruncko, B. J. McKay, and A. C. Kneissl, Journal of Materials Engineering and Performance, 18: 5 (2009).
13. T. Leitner, I. Sabirov, R. Pippan, and A. Hohenwarter, Journal of the Mechanical Behavior of Biomedical Materials, 71: 337 (2017).
https://doi.org/10.1016/j.jmbbm.2017.03.020
14. F. Neves, F. M. Braz Fernandes, and J. B. Correia, Materials Science Forum, 636-637: 544 (2010).
https://doi.org/10.4028/www.scientific.net/MSF.636-637.544
15. Y. W. Gu, C. W. Goh, L. S. Goi, C. S. Lim, A. E. W. Jarfors, B. Y. Tay, and M. S. Yong, Materials Science and Engineering A, 392, Iss. 1: 222 (2005).
https://doi.org/10.1016/j.msea.2004.09.025
16. T. Mousavi, F. Karimzadeh, and M. H. Abbasi, Materials Science and Engineering A, 487: 46 (2008).
https://doi.org/10.1016/j.msea.2007.09.051
17. R. Amini, F. Alijani, M. Ghaffari, M. Alizadeh, and A. K. Okyay, Powder Technology, 253: 797 (2014).
https://doi.org/10.1016/j.powtec.2013.12.029
18. C. Suryanarayana, Materials Science and Engineering A, 479: 23 (2008).
https://doi.org/10.1016/j.msea.2007.07.021
19. H. Dutta, A. Sen, J. Bhattacharjee, and S. K. Pradhan, Journal of Alloys and Compounds, 493: 666 (2010).
https://doi.org/10.1016/j.jallcom.2009.12.184
20. L. Lutterotti, Microstructure Analysis by MAUD (2016); http://maud.radiographema.com/.
21. B. E. Warren and B. L. Averbach, J. Appl. Phys., 21: 595 (1950).
https://doi.org/10.1063/1.1699713
22. H. M. Rietveld, J. Appl. Crystallogr., 2: 65 (1969).
https://doi.org/10.1107/S0021889869006558
23. R. J. Hill, Powder Diffraction, 6: 74 (1991).
https://doi.org/10.1017/S0885715600017036
24. R. Amini, M. J. Hadianfard, E. Salahinejad, M. Marasi, and T. Sritharan, J. Mater. Sci., 44: 136 (2009).
https://doi.org/10.1007/s10853-008-3117-9
25. B.-Y. Li, L.-J. Rong, and Y.-Y. Li, Intermetallics, 8: 643 (2000).
https://doi.org/10.1016/S0966-9795(99)00140-5
26. W. Maziarz, J. Dutkiewicz, J. Van Humbeeck, and T. Czeppe, Materials Science and Engineering A, 375-377: 844 (2004).
https://doi.org/10.1016/j.msea.2003.10.127
27. J. Sort, J. Nogues, S. Surinach, J. S. Munoz, and M. D. Baro, Materials Science and Engineering A, 377: 869 (2004).
https://doi.org/10.1016/j.msea.2003.10.186
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement