Download the full version of the article (in PDF format)
Laboratory of Metallic and Semiconducting Materials, University of Biskra, 07000 Biskra, Algeria

A Review on Synthesis and Characterization of Some Copper-Oxide Properties and Potential Application

677–718 (2025)

PACS numbers: 61.05.cp, 68.55.J-, 73.61.Le, 78.30.Hv, 78.55.Hx, 78.67.Bf, 81.07.Bc

This review focuses on the synthesis and characterization of p-type metal-oxide (p-type CuO) semiconductor thin films used for chemical-sensing applications. p-Type CuO thin films exhibit several advantages over n-type metal-oxide, including a higher catalytic effect, low humidity dependence, and improved recovery speed. However, the sensing performance of CuO thin film is strongly related to the intrinsic physicochemical properties of the material and their thickness. The latter is heavily dependent on synthesis techniques. Many techniques used for growing p-type CuO thin films are reviewed herein. Copper oxide is called a multifunctional material by dint of possessing a broad range of chemical and physical properties, which are often highly sensitive to changes in processing parameters, although, extensive research and development, the optimization of the processing parameters are still in full development until today, where the overall research found that the different properties of copper oxide are based on the experimental conditions. In this extensive review, we focus more on discussing the effect of major synthesis processing parameters such as precursor solution, annealing temperature, and thickness of the nanomaterial, which various researchers have obtained. These factors are critically reviewed, evaluated, and compared.

KEY WORDS: semiconductor copper oxide, synthesis methods, p-CuO thin films, precursor solution, annealing temperature

DOI: https://doi.org/10.15407/nnn.23.03.0677

REFERENCES
  1. A. J. Resende, Copper-Based p-Type Semiconducting Oxides (from Materials to Devices) (Université Grenoble Alpes–Univ of Liège: 2017) (in French).
  2. B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, Th. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, and C. Ronning, physica status solidi (b), 249, Iss. 8: 487 (2012); https://doi.org/10.1002/pssb.201248128
  3. T. Mahalingam, J. Chitra, J. Chu, S. Velumani, and P. Sebastian, Solar Energy Materials and Solar Cells, 88, Iss. 2: 209 (2005); https://doi.org/10.1016/j.solmat.2004.05.026
  4. P. R. Markworth, X. Liu, J. Y. Dai, W. Fan, T. J. Marks, R. P. H. Chang, Journal of Materials Research, 16, Iss. 8: 2408 (2001).
  5. P. Mitra, Journal of Physical Sciences, 14: 235 (2010).
  6. A. Y. Oral, E. Menşur, M. H. Aslan, and Engin Başaran, Materials Chemistry and Physics, 83, Iss. 1: 140 (2004); https://doi.org/10.1016/j.matchemphys.2003.09.015
  7. A. Ogwu, T. Darma, and E. Bouquerel, Journal of Achievements in Materials and Manufacturing Engineering, 24, Iss. 1: 172 (2007).
  8. M. Al-Kuhaili, Vacuum, 82, Iss. 6: 623, (2008); https://doi.org/10.1016/j.vacuum.2007.10.004
  9. K. Santra, C. Sarkar, M. Mukherjee, and B. Ghosh, Thin Solid Films, 213, Iss. 2: 226 (1992); https://doi.org/10.1016/0040-6090(92)90286-K
  10. N. Silva, S. Ramírez, I. Díaz, A. Garcia, and N. Hassan, Materials, 12, Iss. 5: 804 (2019); https://doi.org/10.3390/ma12050804
  11. S. Mosleh, M.R. Rahimi, M. Ghaedi, K. Dashtian, and S. Hajati, Ultrasonics Sonochemistry, 40: 601 (2018); https://doi.org/10.1016/j.ultsonch.2017.08.007
  12. E. Mousali and M. A. Zanjanchi, Journal of Solid State Electrochemistry, 23, Iss. 3: 925 (2019); https://doi.org/10.1007/s10008-019-04194-9
  13. H. Abbasian, D. Ghanbari, and G. Nabiyouni, Journal of Nanostructures, 3, Iss. 4: 429 (2013); https://doi.10.7508/JNS.2013.04.007
  14. V.V. Khedekar and B. M. Bhanage, Journal of the Electrochemical Society, 163, Iss. 6: B248 (2016); https://doi.10.1149/2.1101606jes
  15. S. Bhuvaneshwari and N. Gopalakrishnan, Journal of Colloid and Interface Science, 480: 76 (2016); https://doi.org/10.1016/j.jcis.2016.07.004
  16. M. S. Araújo, R. R. Silva, G. Pacheco, W. R. Lustri, A. Tercjak, J. Gutierrez, J. R. S. Júnior, F. H. C. Azevedo, G. S. Figuêredo, M. L. Vega, S. J. L. Ribeiro, and H. S. Barud, Carbohydrate Polymers, 179: 341 (2018); https://doi.org/10.1016/j.carbpol.2017.09.081
  17. Z. Zhong, V. Ng, J. Luo, S.-P. Teh, J. Teo, and A. Gedanken, Langmuir, 23, Iss. 11: 5971 (2007).
  18. J. Zhang, J. Wang, Y. Fu, B. Zhang, and Z. Xie, RSC Advances, 5, Iss. 36: 28786 (2015); https://doi.10.1039/C5CP02150B
  19. M. A. Choudhary, R. Manan, M. Aslam Mirza, H. Rashid Khan, S. Qayyum, and Z. Ahmed, Int. J. Mater. Sci. Eng., 4, Iss. 1: 1 (2018).
  20. E. Souza, R. Landers, L. Cardoso, T. G. Cruz, M. Tabacniks, and A. Gorenstein, Journal of Power Sources, 155, Iss. 2: 358 (2006); https://doi.org/10.1016/j.jpowsour.2005.04.014
  21. J. Kampmann, S. Betzler, H. Hajiyani, S. Häringer, M. Beetz, T. Harzer, J. Kraus, B. V. Lotsch, C. Scheu, R. Pentcheva, D. Fattakhova-Rohlfing, and T. Bein, Nanoscale, 12, Iss. 14: 7766 (2020); https://doi.10.1039/D0NJ05788F
  22. R. Wu, Z. Ma, Z. Gu, and Y. Yang, 2010 International Conference on Mechanic Automation and Control Engineering (2010), p. 3183; https://doi.10.1109/MACE.2010.5535652
  23. N. Al Armouzi, G. El Hallani, A. Liba, M. Zekraoui, H. S. Hilal, N. Kouider, and M. Mabrouki, Materials Research Express, 6, Iss. 11: 116405 (2019); https://doi.10.1088/2053-1591/ab44f3
  24. C. Mrabet, R. Jaballah, N. Mahdhi, A. Boukhachem, and M. Amlouk, Journal of Alloys and Compounds, 968: 172252 (2023); https://doi.org/10.1016/j.jallcom.2023.172252
  25. A. A. Radhakrishnan and B. B. Beena, Indian J. Adv. Chem. Sci., 2, Iss. 2: 158 (2014).
  26. H. Zhu, D. Han, Z. Meng, D. Wu, and C. Zhang, Nanoscale Research Letters, 6: 1 (2011); https://doi.org/10.1186/1556-276X-6-181
  27. J. V. Bruckner, S. S. Anand, and D. A. Warren, Casarette and Doull's Toxicology: The Basic Science of Poison (Ed. C. D. Klaassen) (2008), p. 981–1051.
  28. R. Aelion, A. Loebel, and F. Eirich, The Hydrolysis and Polycondensation of Tetra Alkoxysilanes, Recueil des Travaux Chimiques des Pays-Bas, 69, Iss. 1: 61 (1950); https://doi.org/10.1002/recl.19500690109
  29. T. H. Tran and V. T. Nguyen, International Scholarly Research Notices, 2014: Article ID 856592 (2014); http://dx.doi.org/10.1155/2014/856592
  30. M. Z.-C. Hu, E. A. Payzant, and C. H. Byers, Journal of Colloid and Interface Science, 222, Iss. 1: 20 (2000); https://doi.org/10.1006/jcis.1999.6610
  31. U. T. Khatoon, K. Mohan Mantravadi, and G. Nageswara Rao, Materials Science and Technology, 34, Iss. 18: 2214 (2018); https://doi.org/10.1080/02670836.2018.1482600
  32. A. Kahru and H. C. Dubourguier, Toxicology, 269, Iss. 2–3: 105 (2010); https://doi.org/10.1016/j.tox.2009.08.016
  33. P. C. Y. Ng, B. J. Long, W. T. Davis, D. J. Sessions, and A. Koyfman, Internal and Emergency Medicine, 13: 375 (2018); https://doi.org/10.1007/-018-1799-9
  34. T. Munekata, T. Suzuki, S. Yamakawa, and R. Asahi, Physical Review E, 88, Iss. 5: 052314 (2013); https://doi.org/10.1103/PhysRevE.88.052314
  35. D. B. Potter, I. P. Parkin, and C. J. Carmalt, RSC Advances, 8, Iss. 58: 33164 (2018); https://doi.10.1039/C8RA06417B
  36. X.-D. Yang, L.-L. Jiang, C.-J. Mao, H.-L. Niu, J.-M. Song, and S.-Y. Zhang, Materials Letters, 115: 121 (2014); https://doi.org/10.1016/j.matlet.2013.10.037
  37. L. Guo, F. Tong, H. Liu, H. Yang, and J. Li, Materials Letters, 71: 32 (2012); https://doi.org/10.1016/j.matlet.2011.11.105
  38. J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, and L. Lu, Materials Letters, 61, Iss. 30: 5236 (2007); https://doi.org/10.1016/j.matlet.2007.04.037
  39. J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, and L. Lu, Materials Letters, 61, Iss. 30: 5236 (2007); https://doi.org/10.1016/j.matlet.2007.04.037
  40. Z. Cheng, J. Xu, H. Zhong, X. Chu, and J. Song, Materials Letters, 65, Iss. 13: 2047 (2011); https://doi.org/10.1016/j.matlet.2011.04.021
  41. A. Rydosz, Coatings, 8, Iss. 12: 425 (2018); https://doi.org/10.3390/coatings8120425
  42. H. Siddiqui, M. R. Parra, and F. Z. Haque, Journal of Sol–Gel Science and Technology, 87: 125 (2018); https://doi.org/10.1007/s10971-018-4663-5
  43. J. Wang, Y. Qi, Z. Zhi, J. Guo, M. Li, and Y. Zhang, Smart Materials and Structures, 16, Iss. 6: 2673 (2007); https://doi.org/10.1088/0964-1726/16/6/072
  44. Handbook of Microemulsion Science and Technology (Eds. P. Kumar and K. L. Mittal) (New York, D.C.: US Govt. Printing Office–Marcel Dekker–CRC Press: 1999); https://doi.org/10.1201/9780203752739
  45. P. Mallick and S. Sahu, Nanoscience and Nanotechnology, 2, Iss. 3: 71 (2012); https://doi.org/10.5923/j.nn.20120203.05
  46. A. Sawaby, M. S. Selim, S. Y. Marzouk, M. A. Mostafa, and A. Hosny, Physica B: Condensed Matter, 405, Iss. 16: 3412 (2010); https://doi.org/10.1016/j.physb.2010.05.015
  47. N. Zayyoun, B. Jaber, L. Laânab, E. Ntsoenzok, and R. Bekkari, J. Mater. Environ. Sci., 7, Iss. 5: 1791 (2016).
  48. H. Serrar, A. Bouabellou, Y. Bouachiba, A. Taabouche, A. Bouhank, Y. Bellal, and H. Merabti, Am. J. Mater. Synth. Process, 3, Iss. 2: 12 (2018); https://doi.10.11648/j.ajmsp.20180302.12
  49. H. Serrar, A. Bouabellou, Y. Bouachiba, A. Taabouche, A. Bouhank, Y. Bellal, and H. Merabti, Thin Solid Films, 686: 137282 (2019); https://doi.org/10.1016/j.tsf.2019.05.001
  50. Zaid Hamid Mahmoud, Nuha Farhan Abdul Kareem, and Aklas Ahmed Abdul Kareem, Asian J. Chem., 30: Iss. 1: 223 (2018); https://doi.org/10.14233/ajchem.2018.21047
  51. E. Benrezgua, B. Deghfel, Z. Abdelhalim, W. J. Basirun, R. Amari, A. Boukhari, M. K. Yaakob, S. Kheawhom, and A. A. Mohamad, Journal of Molecular Structure, 1267: 133639 (2022); https://doi.org/10.1016/j.molstruc.2022.133639
  52. L. Znaidi, Materials Science and Engineering: B, 174, Iss. 1–3: 18 (2010); https://doi.org/10.1016/j.mseb.2010.07.001
  53. D. Halin, I. Talib, A. Daud, and M. Hamid, International Journal of Photoenergy, 2014: Article ID 352156 (2014); https://doi.org/10.1155/2014/352156
  54. P. Samarasekara and N. Premasiri, arXiv preprint arXiv: 1806.03976 (2018); https://doi.org/10.48550/arXiv.1806.03976
  55. T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, and J. Chen, Applied Surface Science, 311: 602 (2014); https://doi.org/10.1016/j.apsusc.2014.05.116
  56. Indian Institute of Metals, Vol. 21 (1968).
  57. O. Reyes, D. Maldonado, J. Escorcia-García, and P. Sebastian, Journal of Materials Science: Materials in Electronics, 29: 15535 (2018); https://doi.org/10.1007/s10854-018-9110-4
  58. S. Farhad, S. Majumder, M. A. Hossain, N. Tanvir, R. Akter, and M. A. Patwary, MRS Advances, 4, Iss. 16: 937 (2019); https://doi.org/10.1557/adv.2019.139
  59. V. Avrutin, N. Izyumskaya, and H. Morkoç, Superlattices and Microstructures, 49, Iss. 4: 337 (2011); https://doi.org/10.1016/j.spmi.2010.12.011
  60. A. Rakhshani, A. Al-Jassar, and J. Varghese, Thin Solid Films, 148, Iss. 2: 191 (1987); https://doi.org/10.1016/0040-6090(87)90157-X
  61. L. Olsen, F. Addis, and W. Miller, Solar Cells, 73: 247 (1982); https://doi.org/10.1016/0379-6787(82)90050-3
  62. G. Sığırcık and T. Tüken, Journal of Materials Science: Materials in Electronics, 31: 17855 (2020); https://doi.org/10.1007/s10854-020-04339-x
  63. Z. N. Kayani, W. Chaudhry, R. Sagheer, S. Riaz, and S. Naseem, Materials Science and Engineering: B, 283: 115799 (2022); https://doi.org/10.1016/j.mseb.2022.115799
  64. A. Maini and M. Shah, International Journal of Ceramic Engineering & Science, 3, Iss. 4: 192 (2021); https://doi.org/10.1002/ces2.10097
  65. K. Iimura, Y. Ishikawa, T. Kikuchi, T. Takai, H. Satone, and M. Suzuki, Journal of the Ceramic Society of Japan, 125, Iss. 8: 634 (2017); https://doi.org/10.2109/jcersj2.17012
  66. T. Fujiwara, T. Nakaue, and M. Yoshimura, Solid State Ionics, 175, Iss. 1–4: 541 (2004); https://doi.org/10.1016/j.ssi.2004.01.081
  67. Q. Zhu, Y. Zhang, J. Wang, F. Zhou, and P. K. Chu, Journal of Materials Science & Technology, 27, Iss. 4: 289 (2011); https://doi.org/10.1016/S1005-0302(11)60064-9
  68. T. Karthik, A. Hernández, Y. Kudriavtsev, H. Gómez-Pozos, M. Ramírez-Cruz, L. Martínez-Ayala, and A. Escobosa-Echvarria, Journal of Materials Science: Materials in Electronics, 31: 7470 (2020); https://doi.org/10.1007/s10854-020-02987-7
  69. S. Benramache and B. Benhaoua, Open Physics, 14, Iss. 1: 714 (2016); https://doi.org/10.1515/phys-2016-0080
  70. S. Joishy, S. D. Kulkarni, R. Choudary, S. R. Maidur, P. S. Patil, and B. Rajendra, Materials Research Express, 6, Iss. 10: 106447 (2019); https://doi.10.1088/2053-1591/ab4153
  71. S. Kaur and M. Deshwal, Transactions on Electrical and Electronic Materials, 20, Iss. 4: 309 (2019); https://doi.org/10.1007/s42341-019-00113-x
  72. M. Dhaouadi, M. Jlassi, I. Sta, I. B. Miled, G. Mousdis, M. Kompitsas, and W. Dimassi, Am. J. Phys. Appl., 6, Iss. 2: 43 (2018); https://doi.10.11648/j.ajpa.20180602.13
  73. S. Alghamdi, A. O. M. Alzahrani, and M. Aida, Journal of Optics, 52, Iss. 2: 803 (2023); https://doi.org/10.1007/s12596-022-01001-z
  74. C. Abdelmounaïm, Z. Amara, A. Maha, and D. Mustapha, Materials Science in Semiconductor Processing, 43: 214 (2016); https://doi.org/10.1016/j.mssp.2015.12.019
  75. C. Ravi Dhas, Dinu Alexander, A. Jennifer Christy, K. Jeyadheepan, A. Moses Ezhil Raj, and C. Sanjeevi Raja, Asian Journal of Applied Sciences, 7, Iss. 8: 67 (2014); https://doi.org/10.3923/ajaps.2014.671.684
  76. A. S. Kumar, K. Perumal, and P. Thirunavukkarasu, Optoelec. Advan. Mater. — Rapid Commun., 4, Iss. 6: 831 (2010).
  77. V. Jagadeesan and V. Subramaniam, Journal of Materials Science: Materials in Electronics, 30: 1571 (2019); https://doi.org/10.1007/s10854-018-0428-8
  78. D. Gopalakrishna, K. Vijayalakshmi, and C. Ravidhas, Ceramics International, 39, Iss.7: 7685, (2013); https://doi.org/10.1016/j.ceramint.2013.03.021
  79. R. Shabu, A. M. E. Raj, C. Sanjeeviraja, and C. Ravidhas, Materials Research Bulletin, 68: 1 (2015); https://doi.org/10.1016/j.materresbull.2015.03.016
  80. H. Hashim, S. S. Shariffudin, M. S. P. Sarah, and N. I. Nasir, 2016 IEEE International Conference on Semiconductor Electronics (ICSE) (17–19 August 2016) (IEEE: 2016), p. 224; https://doi.org/10.1109/SMELEC.2016.7573632
  81. M. Yurddaskal, T. Dikici, and E. Celik, Ceramics International, 42, Iss. 15: 17749 (2016); https://doi.org/10.1016/j.ceramint.2016.08.102
  82. A. Hassanien, A. Atta, M. El-Nahass, S. I. Ahmed, A. A. Shaltout, A. M. Al-Baradi, A. Alodhayb, and A. Kamal, Optical and Quantum Electronics, 52: 1 (2020); https://doi.org/10.1007/s11082-020-02306-8
  83. C. Vidyasagar, Y. Arthoba Naik, T. Venkatesha, and R. Viswanatha, Nano-Micro Letters, 4: 73 (2012); https://doi.org/10.1007/BF03353695
  84. K. Khojier and A. Behju, International Journal of Nano Dimension, 2, Iss. 3: 185 (2012).
  85. M. Heinemann, B. Eifert, and C. Heiliger, Physical Review B, 87, Iss. 11: 115111 (2013); https://doi.org/10.1103/PhysRevB.87.115111
  86. A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O'Mullane, and K. Kalantar-Zadeh, Journal of Materials Chemistry C, 2, Iss. 27: 5247 (2014); https://doi.org/10.1039/C4TC00345D
  87. G. Fritz-Popovski, F. Sosada-Ludwikowska, A. Köck, J. Keckes, and G. A. Maier, Sci. Rep., 9, Iss. 1: 807 (2019); https://doi.org/10.1038/s41598-018-37172-8
  88. L. Yuan, Y. Wang, R. Mema, and G. Zhou, Acta Materialia, 59, Iss. 6: 2491 (2011); https://doi.org/10.1016/j.actamat.2010.12.052
  89. I. A. Ezenwa, Research Journal of Chemical Sciences, 2: Iss. 3: 26 (2012); https://www.isca.me/rjcs/Archives/v2/i3/5.ISCA-RJCS-2011-252%20Done.php
  90. P. Ooi, S. Ng, M. Abdullah, H. A. Hassan, and Z. Hassan, Materials Chemistry and Physics, 140, Iss. 1: 243 (2013); https://doi.org/10.1016/j.matchemphys.2013.03.028
  91. R. D. Prabu, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, S. Srikumar, and R. Chandramohan, Materials Science in Semiconductor Processing, 74: 129 (2018); https://doi.org/10.1016/j.mssp.2017.10.023
  92. D. Ozaslan, O. Erken, M. Gunes, and C. Gumus, Physica B: Condensed Matter, 580: 411922 (2020); https://doi.org/10.1016/j.physb.2019.411922
  93. Y. H. Ribeiro, J. D. S. Pereira, D. G. David, and M. V. da Silva, Thin Solid Films, 757: 139381 (2022); https://doi.org/10.1016/j.tsf.2022.139381
  94. K. Khojier, H. Savaloni, and Z. Sadeghi, Journal of Theoretical and Applied Physics, 8: 1 (2014); https://doi.org/10.1007/s40094-014-0116-x
  95. F. A. Akgul, G. Akgul, N. Yildirim, H. E. Unalan, and R. Turan, Materials Chemistry and Physics, 147, Iss. 3: 987 (2014); https://doi.org/10.1016/j.matchemphys.2014.06.047
  96. M. Mabrouki, Materials Today: Proceedings, 13: 771 (2019); https://doi.org/10.1016/j.matpr.2019.04.039
  97. A. A. Baqer, K. A. Matori, N. M. Al-Hada, H. M. Kamari, A. H. Shaari, E. Saion, and J. L. Y. Chyi, Journal of Materials Science: Materials in Electronics, 29: 1025 (2018); https://doi.org/10.1007/s10854-017-8002-3
  98. A. H. Mashhad-Toroghi, N. Shahtahmasebia, E. Azhira, P. Madahia, and M. Mashreghi, Proceedings of the 4th International Conference on Nanostructures (ICNS4) (IR Iran: Kish Island: 2012), p. 12–14.
  99. G. Tunell, Ε. Posnjak, and C. Ksanda, Zeitschrift für Kristallographie — Crystalline Materials, 90, Iss. 1–6: 120 (1935); https://doi.org/10.1524/zkri.1935.90.1.120
  100. S. Åsbrink and L.-J. Norrby, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 26, Iss. 1: 8 (1970); https://doi.org/10.1107/S0567740870001838
  101. D. Volanti, D. Keyson, L. Cavalcante, A. Z. Simões, M. Joya, E. Longo, J. A. Varela, P. Pizani, and A. Souza, Journal of Alloys and Compounds, 459, Iss. 1–2: 537 (2008); https://doi.org/10.1016/j.jallcom.2007.05.023
  102. G. Pezzotti, Journal of Applied Physics, 113, Iss. 21: 8 (2013); https://doi.org/10.1063/1.4803740
  103. B. Balamurugan, B. Mehta, D. Avasthi, F. Singh, A.K. Arora, M. Rajalakshmi, G. Raghavan, A. Tyagi, and S. Shivaprasad, Journal of Applied Physics, 92, Iss. 6: 3304 (2002); https://doi.org/10.1063/1.1499752
  104. N. Touka, D. Tabli, and K. Badari, Journal of Optoelectronics and Advanced Materials, 21, Iss. 12: 698 (2019).
  105. M. L. Zeggar, M. Aida, and N. Attaf, Journal of New Technology and Materials, 277, Iss. 1747: 1 (2014).
  106. S. B. Sadale, S. B. Patil, A. M. Teli, H. Masegi, and K. Noda, Solid State Sciences, 123: 106780 (2022); https://doi.org/10.1016/j.solidstatesciences.2021.106780
  107. D. S. Che Halin, I. A. Talib, A. R. Daud, and M. A. A. Hamid, Materials Science Forum, 819: 189 (2015); https://doi.org/10.4028/www.scientific.net/MSF.819.189
  108. Y. Liu, J. Zhang, W. Zhang, W. Liang, B. Yu, and J. Xue, Journal of Wuhan University of Technology—Mater. Sci. Ed., 30, Iss. 1: 92 (2015); https://doi.org/10.1007/s11595-015-1106-9
  109. U. Akgul, K. Yildiz, and Y. Atici, The European Physical Journal Plus, 131: 1 (2016); https://doi.org/10.1140/epjp/i2016-16089-3
  110. L. Huang, S. Yang, T. Li, B. Gu, Y. Du, Y. Lu, and S. Shi, Journal of Crystal Growth, 260, Iss. 1–2: 130 (2004); https://doi.org/10.1016/j.jcrysgro.2003.08.012
  111. A. Ravichandran, K. Dhanabalan, R. Chandramohan, A. Vasuhi, and P. Parameswaran, International Journal of Information Research and Review, 1: 007 (2014).
  112. F. Mugwang'a, P. Karimi, W. Njoroge, O. Omayio, and S. Waita, International Journal of Thin Films Science and Technology, 2, Iss. 1: 15 (2013).
  113. L. D. L. S. Valladares, D. H. Salinas, A. B. Dominguez, D. A. Najarro, S. Khondaker, T. Mitrelias, C. Barnes, J. A. Aguiar, and Y. Majima, Thin Solid Films, 520, Iss. 20: 6368 (2012); https://doi.org/10.1016/j.tsf.2012.06.043
  114. W. Zheng, Y. Chen, X. Peng, K. Zhong, Y. Lin, and Z. Huang, Materials, 11, Iss. 7: 1253 (2018); https://doi.org/10.3390/ma11071253
  115. X. Zhang, Z. Li, and J. Fan, Materials Science in Semiconductor Processing, 137: 106227 (2022); https://doi.org/10.1016/j.mssp.2021.106227
  116. T. Çayir Taşdemirci, Electronic Materials Letters, 16: 239 (2020); https://doi.org/10.1007/s13391-020-00205-4
  117. M. R. Johan, M. S. M. Suan, N. L. Hawari, and H. A. Ching, Int. J. Electrochem. Sci., 6, Iss. 12: 6094 (2011); https://doi.org/10.1016/S1452-3981(23)19665-9
  118. N. Al Armouzi, M. Manoua, H. S. Hilal, A. Liba, and M. Mabrouki, Processes, 10, Iss. 7: 1277 (2022); https://doi.org/10.3390/pr10071277
  119. H. B. Saâd, M. Ajili, S. Dabbabi, and N. T. Kamoun, Superlattices and Microstructures, 142: 106508 (2020); https://doi.org/10.1016/j.spmi.2020.106508
  120. O. Abdelouahab, Rahmane Saâd, Ben Messaoud Ouarda, K. Aicha, and S. Mostefa, Iranian Journal of Materials Science and Engineering, 19, Iss. 1: (2022); https://doi.10.22068/ijmse.2582
  121. L. Chabane, N. Zebbar, M. L. Zeggar, M. Aida, M. Kechouane, M. Trari, Materials Science in Semiconductor Processing, 40: 840 (2015); https://doi.org/10.1016/j.mssp.2015.07.080
  122. S. Shariffudin, S. Khalid, N. Sahat, M. Sarah, and H. Hashim, IOP Conference Series: Materials Science and Engineering, 99, Iss. 1: 012007 (2015); https://doi.10.1088/1757-899X/99/1/012007
  123. V. Bhuse, P. Hankare, K. Garadkar, and A. Khomane, Materials Chemistry and Physics, 80, Iss. 1: 82 (2003); https://doi.org/10.1016/S0254-0584(02)00306-1
  124. S. A. M. H. M. Ali, Journal of Multidisciplinary Engineering Science Studies, 2: 532 (2016).
  125. K. Kamli, Z. Hadef, B. Chouial, and B. Hadjoudja, Surface Engineering, 35, Iss. 1: 86 (2019); https://doi.org/10.1080/02670844.2018.1475052
  126. O. Reyes-Vallejo, J. Escorcia-García, and P. Sebastian, Materials Science in Semiconductor Processing, 138: 106242 (2022); https://doi.org/10.1016/j.mssp.2021.106242
  127. V. Chawla, N. Sardana, H. Kaur, A. Kumar, R. Chandra, and S. Mishra, Applied Surface Science, 504: 144369 (2020); https://doi.org/10.1016/j.apsusc.2019.144369
  128. L. V. Devi, S. Sellaiyan, S. Sankar, and K. Sivaji, Materials Research Express, 5, Iss. 2: 024002 (2018); https://doi.10.1088/2053-1591/aaa7a3
  129. I. Singh, S. Dey, S. Santra, K. Landfester, R. Muñoz-Espí, and A. Chandra, ACS Omega, 3, Iss. 5: 5029 (2018).
  130. N. Sankar, V. Sankaranarayanan, L. Vaidhyanathan, G. Rangarajan, R. Srinivasan, K. Thomas, U. Varadaraju, and G. S. Rao, Solid State Communications, 67, Iss. 4: 391 (1988); https://doi.org/10.1016/0038-1098(88)91051-4
  131. Bahaa M. Abu-Zied, Salem M. Bawaked, Samia A. Kosa, and Wilhelm Schwieger, Int. J. Electrochem. Sci., 11, Iss. 3: 2230 (2016); https://doi.org/10.1016/S1452-3981(23)16097-4
  132. Bahaa M. Abu-Zied, Salem M. Bawaked, Samia A. Kosa, and Wilhelm Schwieger, Int. J. Electrochem. Sci, 11, Iss. 2: 1568 (2016); https://doi.org/10.1016/S1452-3981(23)15942-6
  133. D. Wang, Y. Wang, T. Jiang, H. Jia, and M. Yu, Journal of Materials Science: Materials in Electronics, 27: 2138 (2016); https://doi.org/10.1007/s10854-015-4003-2
  134. C. Meneses, J. Duque, L. Vivas, and M. Knobel, Journal of Non-Crystalline Solids, 354, Iss. 42–44: 4830 (2008); https://doi.org/10.1016/j.jnoncrysol.2008.04.025
  135. S. Baig, P. Kumar, J. Ngai, Y. Li, and S. Ahmed, Chem. Phys. Chem., 21, Iss. 9: 895 (2020); https://doi.org/10.1002/cphc.202000005
  136. M. Ariëns, L. van de Water, A. I. Dugulan, E. Brück, and E. J. Hensen, Journal of Catalysis, 405: 391 (2022); https://doi.org/10.1016/j.jcat.2021.12.013
  137. W. Wang, Z. Li, W. Zheng, J. Yang, H. Zhang, and C. Wang, Electrochemistry Communications, 11, Iss. 9: 1811 (2009); https://doi.org/10.1016/j.elecom.2009.07.025
  138. H. Absike, M. Hajji, H. Labrim, A. Abbassi, and H. Ez-Zahraouy, Superlattices and Microstructures, 127: 128 (2019); https://doi.org/10.1016/j.spmi.2017.12.038
  139. S. Masudy-Panah, K. Radhakrishnan, H. R. Tan, R. Yi, T. I. Wong, and G. K. Dalapati, Solar Energy Materials and Solar Cells, 140: 266 (2015); https://doi.org/10.1016/j.solmat.2015.04.024
  140. R. M. Thyab, M. A. Al-Hilo, F. A. Yasseen, H. Alshater, E. G. Blall, and M. A. Abdel-Lateef, NeuroQuantology, 20, Iss. 3: 99 (2022); https://doi.10.14704/nq.2022.20.3.NQ22048
  141. J. H. Bae, J. H. Lee, S. P. Park, T. S. Jung, H. J. Kim, D. Kim, S.-W. Lee, K.-S. Park, S. Yoon, and I. Kang, ACS Applied Materials & Interfaces, 12, Iss. 34: 38350 (2020).
  142. A. Yildiz, Ş. Horzum, N. Serin, and T. Serin, Applied Surface Science, 318: 105 (2014); https://doi.org/10.1016/j.apsusc.2014.01.118
  143. D. Tabli, D. N. Touka, K. Baddari, and N. Selmi, Advances in Materials Science, 22, Iss. 3: 5 (2022); https://doi.org/10.2478/adms-2022-0009
  144. D. Tabli, N. Touka, K. Baddari, and N. Selmi, Advances in Materials Science, 22, Iss. 3: 5 (2022); https://doi.org/10.2478/adms-2022-0009
  145. H. Siddiqui, M. Qureshi, and F. Z. Haque, Materials Letters, 275: 128090 (2020); https://doi.org/10.1016/j.matlet.2020.128090
  146. H. Siddiqui, M. R. Parra, M. Qureshi, M. Malik, and F. Z. Haque, Journal of Materials Science, 53, Iss. 12: 8826 (2018); https://doi.org/10.1007/s10853-018-2179-6
  147. T. V. Thi, A. K. Rai, J. Gim, and J. Kim, Applied Surface Science, 305: 617 (2014); https://doi.org/10.1016/j.apsusc.2014.03.144
  148. C.-Y. Chiang, Y. Shin, and S. Ehrman, Journal of The Electrochemical Society, 159, Iss. 2: B227 (2011); https://doi.10.1149/2.081202jes
  149. F. Z. Chafi, L. Bahmad, N. Hassanain, B. Fares, L. Laanab, and A. Mzerd, arXiv preprint arXiv: 1807.09697 (2018); https://doi.org/10.48550/arXiv.1807.09697
  150. L. V. Devi, T. Selvalakshmi, S. Sellaiyan, A. Uedono, K. Sivaji, and S. Sankar, Journal of Alloys and Compounds, 709: 496 (2017); https://doi.org/10.1016/j.jallcom.2017.03.148
  151. S. Bhuvaneshwari and N. Gopalakrishnan, Journal of Alloys and Compounds, 654: 202 (2016); https://doi.org/10.1016/j.jallcom.2015.09.046
  152. Sayantan Das and T. L. Alford, Journal of Applied Physics, 113: 244905 (2013); https://doi.org/10.1063/1.4812584
  153. A. Menazea and A. M. Mostafa, Journal of Environmental Chemical Engineering, 8, Iss. 5: 104104 (2020); https://doi.org/10.1016/j.jece.2020.104104
  154. S. Vidhya, O. Balasundaram, and M. Chandramohan, Journal of Optoelectronics and Advanced Materials, 17: 963 (2015).
  155. J. Wu, K. Hui, K. Hui, L. Li, H.-H. Chun, and Y. Cho, Journal of Materials Science: Materials in Electronics, 27: 1719 (2016); https://doi.org/10.1007/s10854-015-3945-8
  156. F. Bayansal, Y. Gülen, B. Şahin, S. Kahraman, and H. Çetinkara, Journal of Alloys and Compounds, 619: 378 (2015); https://doi.org/10.1016/j.jallcom.2014.09.085