Download the full version of the article (in PDF format)
College of Science, Department of Physics, Mosul University, Al Majmoaa Str., 41002 Mosul, Iraq

Fabrication of Cadmium Selenide (CdSe)–Porous Silicon (PSi) Solar Cell

667–675 (2025)

PACS numbers: 68.37.Hk, 68.37.Vj, 78.67.Rb, 81.16.Be, 81.65.Cf, 88.40.hj, 88.40.jp

Chemical-bath deposition is used to prepare thin films of CdSe on p-type porous-silicon wafers at room temperature. Porous-silicon substrates are prepared using an electrochemical-etching method for etching time of 5 and 15 min. The energy gap of CdSe thin film is of 2.6 eV. Scanning electron microscope images and x-ray spectrum demonstrate that the films of the PSi–CdSe junction show that the films are crystalline with a small presence of the amorphous phase, and the grain size of CdSe compound is of about 38–41 nm. The junction shows IV characteristics similar to that of ideal-diode and solar-cell characteristics.

KEY WORDS: porous silicon, CdSe thin films, solar-cell characteristics, diode characteristics

DOI: https://doi.org/10.15407/nnn.23.03.0667

REFERENCES
  1. Diksha Garg, Kandi Sridhar, Baskaran Stephen Inbaraj, Prince Chawla, Manikant Tripathi, and Minaxi Sharma, Bioengineering, 10, Iss. 9: 1010 (2023); https://doi.org/10.3390/bioengineering10091010
  2. M. Dhanam, R. R. Prabhu, and P. K. Manoj, Materials Chemistry and Physics, 107, Iss. 2–3: 289 (2008); https://doi.org/10.12785/ijtfst/030205
  3. S. K. Shinde, D. P. Dubal, G. S. Ghodake, and V. J. Fulari, Materials Letters, 126: 17 (2014); https://doi.org/10.1016/j.matlet.2014.06.099
  4. R. Yu, Q. Lin, S. F. Leung, and Z. Fan, Nano Energy, 1, No. 1: 57 (2012); https://doi.org/10.1088/0022-3727/49/21/215103
  5. Himanshu, Kamlesh, D. Suthar, and M. S. Dhaka, Solid State Communications, 371: 115264 (2023); https://doi.org/10.1016/j.ssc.2023.115264
  6. S. Velumani, X. Mathew, and P. J. Sebastian, Solar Energy Materials and Solar Cells, 76, Iss. 3: 359 (2003); https://doi.org/10.1016/S0927-0248(02)00288-X
  7. Payal Chauhan, Alkesh B. Patel, Som Narayan, Jyoti Prasad, C. K. Sumesh, G. K. Solanki, K. D. Patel, Saurabh S. Soni, P. K. Jha, V. M. Pathak, and Vikas Patel, Journal of Alloys and Compounds, 862: 158016 (2021); https://doi.org/10.1016/j.jallcom.2020.158016
  8. M. A. Hernandez-Perez, J. Aguilar-Hernandez, G. Contreras-Puente, J. R. Vargas-Garcia, and E. Rangel-Salinas, Physica E: Low-Dimensional Systems and Nanostructures, 40, Iss. 7: 2535 (2008); https://doi.org/10.1016/j.physe.2007.10.102
  9. Kriti Sharma, Alaa S. Al-Kabbi, G. S. S. Saini, and S. K. Tripathi, Materials Research Bulletin, 47, Iss. 6: 1400 (2012); https://doi.org/10.1016/j.materresbull.2012.03.008
  10. S. S. Kale and C. D. Lokhande, Materials Chemistry and Physics, 62, Iss. 2: 103 (2000); https://doi.org/10.1016/S0254-0584(99)00139-X
  11. P. P. Hankare, V. M. Bhuse, K. M. Garadkar, S. D. Delekar, and I. S. Mulla, Semiconductor Science and Technology, 19, Iss. 1: 70 (2003); https://doi.org/10.1088/0268-1242/19/1/012
  12. T. Elango, V. Subramanian, and K. R. Murali, Surface and Coatings Technology, 123, Iss. 1: 8 (2000); https://doi.org/10.1016/S0257-8972(99)00163-2
  13. A. A. Yadav, M. A. Barote, and E. U. Masumdar, Materials Chemistry and Physics, 121, Nos. 1–2: 53 (2010); https://doi.org/10.1016/j.matchemphys.2009.12.039
  14. S. J. Lade, M. D. Uplane, and C. D. Lokhande, Materials Chemistry and Physics, 68, Nos. 1–3: 36 (2001); https://doi.org/10.1016/S0254-0584(00)00280-7
  15. Boaz Alperson, Helene Demange, Israel Rubinstein, and Gary Hodes, The Journal of Physical Chemistry B, 103, Iss. 24: 4943 (1999); https://doi.org/10.1021/jp983368f
  16. A. K. Ayal, Z. Zainal, H. N. Lim, Z. A. Talib, Y. C. Lim, S. K. Chang, and W. N. M. Amin, Journal of Materials Science: Materials in Electronics, 27: 5204 (2016); https://doi.org/10.1007/s10854-016-4414-8