Fabrication of Cadmium Selenide (CdSe)–Porous Silicon (PSi) Solar Cell
667–675 (2025)
PACS numbers: 68.37.Hk, 68.37.Vj, 78.67.Rb, 81.16.Be, 81.65.Cf, 88.40.hj, 88.40.jp
Received 3 April, 2024; in revised form, 3 June, 2024
Chemical-bath deposition is used to prepare thin films of CdSe on p-type porous-silicon wafers at room temperature. Porous-silicon substrates are prepared using an electrochemical-etching method for etching time of 5 and 15 min. The energy gap of CdSe thin film is of 2.6 eV. Scanning electron microscope images and x-ray spectrum demonstrate that the films of the PSi–CdSe junction show that the films are crystalline with a small presence of the amorphous phase, and the grain size of CdSe compound is of about 38–41 nm. The junction shows I–V characteristics similar to that of ideal-diode and solar-cell characteristics.
KEY WORDS: porous silicon, CdSe thin films, solar-cell characteristics, diode characteristics
REFERENCES
- Diksha Garg, Kandi Sridhar, Baskaran Stephen Inbaraj, Prince Chawla, Manikant Tripathi, and Minaxi Sharma, Bioengineering, 10, Iss. 9: 1010 (2023); https://doi.org/10.3390/bioengineering10091010
- M. Dhanam, R. R. Prabhu, and P. K. Manoj, Materials Chemistry and Physics, 107, Iss. 2–3: 289 (2008); https://doi.org/10.12785/ijtfst/030205
- S. K. Shinde, D. P. Dubal, G. S. Ghodake, and V. J. Fulari, Materials Letters, 126: 17 (2014); https://doi.org/10.1016/j.matlet.2014.06.099
- R. Yu, Q. Lin, S. F. Leung, and Z. Fan, Nano Energy, 1, No. 1: 57 (2012); https://doi.org/10.1088/0022-3727/49/21/215103
- Himanshu, Kamlesh, D. Suthar, and M. S. Dhaka, Solid State Communications, 371: 115264 (2023); https://doi.org/10.1016/j.ssc.2023.115264
- S. Velumani, X. Mathew, and P. J. Sebastian, Solar Energy Materials and Solar Cells, 76, Iss. 3: 359 (2003); https://doi.org/10.1016/S0927-0248(02)00288-X
- Payal Chauhan, Alkesh B. Patel, Som Narayan, Jyoti Prasad, C. K. Sumesh, G. K. Solanki, K. D. Patel, Saurabh S. Soni, P. K. Jha, V. M. Pathak, and Vikas Patel, Journal of Alloys and Compounds, 862: 158016 (2021); https://doi.org/10.1016/j.jallcom.2020.158016
- M. A. Hernandez-Perez, J. Aguilar-Hernandez, G. Contreras-Puente, J. R. Vargas-Garcia, and E. Rangel-Salinas, Physica E: Low-Dimensional Systems and Nanostructures, 40, Iss. 7: 2535 (2008); https://doi.org/10.1016/j.physe.2007.10.102
- Kriti Sharma, Alaa S. Al-Kabbi, G. S. S. Saini, and S. K. Tripathi, Materials Research Bulletin, 47, Iss. 6: 1400 (2012); https://doi.org/10.1016/j.materresbull.2012.03.008
- S. S. Kale and C. D. Lokhande, Materials Chemistry and Physics, 62, Iss. 2: 103 (2000); https://doi.org/10.1016/S0254-0584(99)00139-X
- P. P. Hankare, V. M. Bhuse, K. M. Garadkar, S. D. Delekar, and I. S. Mulla, Semiconductor Science and Technology, 19, Iss. 1: 70 (2003); https://doi.org/10.1088/0268-1242/19/1/012
- T. Elango, V. Subramanian, and K. R. Murali, Surface and Coatings Technology, 123, Iss. 1: 8 (2000); https://doi.org/10.1016/S0257-8972(99)00163-2
- A. A. Yadav, M. A. Barote, and E. U. Masumdar, Materials Chemistry and Physics, 121, Nos. 1–2: 53 (2010); https://doi.org/10.1016/j.matchemphys.2009.12.039
- S. J. Lade, M. D. Uplane, and C. D. Lokhande, Materials Chemistry and Physics, 68, Nos. 1–3: 36 (2001); https://doi.org/10.1016/S0254-0584(00)00280-7
- Boaz Alperson, Helene Demange, Israel Rubinstein, and Gary Hodes, The Journal of Physical Chemistry B, 103, Iss. 24: 4943 (1999); https://doi.org/10.1021/jp983368f
- A. K. Ayal, Z. Zainal, H. N. Lim, Z. A. Talib, Y. C. Lim, S. K. Chang, and W. N. M. Amin, Journal of Materials Science: Materials in Electronics, 27: 5204 (2016); https://doi.org/10.1007/s10854-016-4414-8