Download the full version of the article (PDF, In Ukrainian / Українською) Open Access
G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Acad. Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Modification of Single-Walled Carbon Nanotubes with CdTe Nanoparticles Using Microwave Irradiation

653–665 (2025)

PACS numbers: 61.82.Rx, 68.37.Hk, 78.40.Ri, 78.67.Bf, 78.70.Gq, 79.60.Jv, 81.05.ub

Single-walled carbon nanotubes are bonded to thioglycolic acid-coated CdTe nanoparticles for forming hybrid nanostructures. The new nanohybrids are characterized with a special emphasis on the physicochemistry of electron transfer. Spectroscopic evidence confirming the partial transfer of charge density from the functional groups directly to the carbon nanotube is presented. Since nanotubes provide a fast way to transport charge carriers to the electrode, the studies open up the prospects of using such nanostructures to create interfaces for sensor systems.

KEY WORDS: carbon nanotubes, CdTe nanoparticles, microwave irradiation, hybrid nanostructures, charge transfer

DOI: https://doi.org/10.15407/nnn.23.03.0653

Citation:
N. A. Kurgan, V. L. Karbivs'kyy, S. I. Shulyma, V. O. Moskaliuk, and O. A. Puz'ko, Modification of Single-Walled Carbon Nanotubes with CdTe Nanoparticles Using Microwave Irradiation, Nanosistemi, Nanomateriali, Nanotehnologii, 23, No. 3: 653–665 (2025); https://doi.org/10.15407/nnn.23.03.0653
REFERENCES
  1. Z. Shariatinia, Handbook of Carbon-Based Nanomaterials (Eds. S. Thomas, C. Sarathchandran, S. A. Ilangovan, and J. C. Moreno-Piraján) (Elsevier: 2021), Ch. 7, p. 321; https://doi.org/10.1016/B978-0-12-821996-6.00016-6
  2. M. N. Norizan, M. H. Moklis, S. Z. Ngah Demon, N. A. Halim, A. Samsuri, I. S. Mohamad, V. F. Knight, and N. Abdullah, RSC Adv., 10, No. 71: 43704 (2020); https://doi.org/10.1039/D0RA09438B
  3. V. Schroeder, S. Savagatrup, M. He, S. Lin, and T. M. Swager, Chem. Rev., 119, No. 1: 599 (2018); https://doi.org/10.1021/acs.chemrev.8b00340
  4. J. Wang, Electroanalysis, 17, No. 1: 7 (2005); https://doi.org/10.1002/elan.200403113
  5. C. W. Tan, K. H. Tan, Y. T. Ong, A. R. Mohamed, S. H. S. Zein, and S. H. Tan, Environ. Chem. Lett., 10: 265 (2012); https://doi.org/10.1007/s10311-012-0356-4
  6. R. Shoukat and M. I. Khan, Microsystem Technologies, 27, No. 12: 4183 (2021); https://doi.org/10.1007/s00542-021-05211-6
  7. R. Stadler and M. Forshaw, Molecular Electronics, 3D Nanoelectronic Computer Architecture and Implementation (Eds. D. Crawley, K. Nikolic, and M. Forshaw) (Boca Raton: CRC Press: 2020), Ch. 5, p. 90; https://doi.org/10.1201/9780429150081
  8. M. Zhang, C. Du, Q. Huang, Z. Liao, Y. Deng, W. Huang, and X. Wang, Carbon Nanotube Transistors, Nanocarbon Electronics (Eds. Ch. Zhou, M. Zhang, and C. Yang) (New York: Jenny Stanford Publishing: 2020), Ch. 4, p. 143; https://doi.org/10.1201/9781003043089
  9. S. Darwin, E. Fantin Irudaya Raj, M. Appadurai, and M. Chithambara Thanu, Energy Systems Design for Low-Power Computing (Eds. R. R. Gatti, Ch. Singh, P. Srividya, and S. Bhat) (Hershey, PA, USA: IGI Global Scientific Publishing: 2023), Ch. 5, p. 67; https://doi.org/10.4018/978-1-6684-4974-5.ch005
  10. V. Selamneni, N. Bokka, V. Adepu, and P. Sahatiya, Carbon Nanomaterials for Emerging Electronic Devices and Sensors. Carbon Nanomaterial Electronics: Devices and Applications (Eds. A. Hazra and R. Goswami) (Singapore: Springer Singapore: 2021), p. 215; https://doi.org/10.1007/978-981-16-1052-3_10
  11. S. Mallakpour and E. Khadem, Chemical Engineering Journal, 302: 344 (2016); https://doi.org/10.1016/j.cej.2016.05.038
  12. L. K. Sarpong, M. Bredol, M. Schönhoff, A. Wegrzynowicz, K. Jenewein, and H. Uphoff, Optical Materials, 86: 398 (2018); https://doi.org/10.1016/j.optmat.2018.10.039
  13. C. Soldano, Progress in Materials Science, 69: 183 (2015); https://doi.org/10.1016/j.pmatsci.2014.11.001
  14. D. Aasen, M. P. Clark, and D. G. Ivey, J. Electrochem. Soc., 167, No. 4: 040503 (2020); https://doi.org/10.1149/1945-7111/ab7094
  15. K. Yadav, N. Khan, and M. Jha, Surface Modified Carbon Nanotubes. Vol. 2: Industrial Applications (Eds. J. Aslam, Ch. M. Hussain, and R. Aslam) (American Chemical Society: 2022), 1425, Ch. 5, p. 101; https://doi.org/10.1021/bk-2022-1425.ch005
  16. J. Chen and G. Lu, Carbon Nanotube-Nanoparticle Hybrid Structures. Carbon Nanotubes (Eds. J. M. Marulanda) (London: IntechOpen: 2010), Ch. 31; https://doi.org/10.5772/39446
  17. X. Li, Y. Jia, and A. Cao, ACS Nano, 4, No. 1: 506 (2010); https://doi.org/10.1021/nn901757s
  18. N. K. Mehra and N. K. Jain, Journal of Drug Targeting, 24, No. 4: 294 (2016); https://doi.org/10.3109/1061186X.2015.1055571
  19. C. Baslak, M. D. Kars, M. Karaman, M. Kus, Y. Cengeloglu, and M. Ersoz, Journal of Luminescence, 160: 9 (2015); https://doi.org/10.1016/j.jlumin.2014.11.030
  20. L. Wang, H. Liu, R. M. Konik, J. A. Misewich, and S. S. Wong, Chemical Society Reviews, 42, No. 20: 8134 (2013); https://doi.org/10.1039/c3cs60088b
  21. A. Hirsch and O. Vostrowsky, Functionalization of Carbon Nanotubes. Functional Molecular Nanostructures. Topics in Current Chemistry. Vol. 245 (Eds. A. D. Schlüter) (Berlin–Heidelberg: Springer: 2005), Ch. 5, p. 193; https://doi.org/10.1007/b98169
  22. Y. P. Sun, K. Fu, Y. Lin, and W. Huang, Acc. Chem. Res., 35, No. 12: 1096 (2002); https://doi.org/10.1021/ar010160v
  23. P. W. Chiu, G. S. Duesberg, U. Dettlaff-Weglikowska, and S. Roth, Appl. Phys. Lett., 80, No. 20: 3811 (2002); https://doi.org/10.1063/1.1480487
  24. K. Balasubramanian and M. Burghard, Small, 1, No. 2: 180 (2005); https://doi.org/10.1002/smll.200400118
  25. K. Balasubramanian, M. Burghard, and K. Kern, Carbon Nanotubes: Electrochemical Modification, Dekker Encyclopedia of Nanoscience and Nanotechnology. Vol. 7 (Eds. J. A. Schwarz, S. E. Lyshevski, and C. I. Contescu) (New York: Dekker: 2014), p. 507.
  26. M. Musameh, N. S. Lawrence, and J. Wang, Electrochemistry Communications, 7, No. 1: 14 (2005); https://doi.org/10.1016/j.elecom.2004.10.007
  27. S. E. Kooi, U. Schlecht, M. Burghard, and K. Kern, Angew. Chem. Int. Ed. Engl., 41, No. 8: 1353 (2002); https://doi.org/10.1002/1521-3773(20020415)41:8<1353::aid-anie1353>3.0.co;2-i
  28. N. Zydziak, C. Hübner, M. Bruns, and C. Barner-Kowollik, Macromol., 44, No. 9: 3374 (2011); https://doi.org/10.1021/ma200107z
  29. P. Eskandari, Z. Abousalman-Rezvani, H. Roghani-Mamaqani, and M. Salami-Kalajahi, Advances in Colloid and Interface Science, 294: 102471 (2021); https://doi.org/10.1016/j.cis.2021.102471
  30. S. S. Qureshi, V. Shah, S. Nizamuddin, N. M. Mubarak, R. R. Karri, M. H. Dehghani, and M. E. Rahman, Journal of Molecular Liquids, 356: 119045 (2022); https://doi.org/10.1016/j.molliq.2022.119045
  31. M. I. Hussein, S. S. Jehangir, I. J. Rajmohan, Y. Haik, T. Abdulrehman, Q. Clément, and N. Vukadinovic, Scientific Reports, 10, No. 1: 16013 (2020); https://doi.org/10.1038/s41598-020-72928-1
  32. E. L. Frankevich, Chemical Generation and Reception of Radio and Microwaves (New York: VCH Publishers: 1994).
  33. E. H. Hong, K.-H. Lee, S. H. Oh, and C.-G. Park, Adv. Funct. Mater., 13, No. 12: 961 (2003); https://doi.org/10.1002/adfm.200304396
  34. T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye and J. M. Tour, Chem. Mater., 15, No. 21: 3969 (2003); https://doi.org/10.1021/cm034530g
  35. T. M. Barnes, X. Wu, J. Zhou, A. Duda, J. van de Lagemaat, T. J. Coutts, C. L. Weeks, D. A. Britz, and P. Glatkowski, Appl. Phys. Lett., 90, No. 24: 243503 (2007); https://doi.org/10.1063/1.2748078
  36. M. Houshmand, M. H. Zandi, and N. E. Gorji, Superlattices and Microstructures, 88: 365 (2015); https://doi.org/10.1016/j.spmi.2015.09.023
  37. D. M. Guldi, G. M. A. Rahman, V. Sgobba, N. A. Kotov, D. Bonifazi, and M. Prato, J. Am. Chem. Soc., 128, No. 7: 2315 (2006); https://doi.org/10.1021/ja0550733
  38. N. Gan, J. Zhou, P. Xiong, F. Hu, Y. Cao, T. Li, and Q. Jiang, Toxins, 5, No. 5: 865 (2013); https://doi.org/10.3390/toxins5050865
  39. B. Zebli, H. A. Vieyra, I. Carmeli, A. Hartschuh, J. P. Kotthaus, and A. W. Holleitner, Phys. Rev. B, 79, No. 20: 205402 (2009); https://doi.org/10.1103/PhysRevB.79.205402
  40. S. Leubner, G. Katsukis, and D. M. Guldi, Faraday Discussions, 155: 253 (2012); https://doi.org/10.1039/c1fd00102g
  41. Y. Khalavka, B. Mingler, G. Friedbacher, G. Okrepka, L. Shcherbak, and O. Panchuk, phys. stat. sol. (a), 207: 370 (2010); https://doi.org/10.1002/pssa.200925260
  42. M. S. Raghuveer, S. Agrawal, N. Bishop, and G. Ramanath, Chemistry of Materials, 18, No. 6: 1390 (2006); https://doi.org/10.1021/cm051911g
  43. Y. Wang, Z. Iqbal, and S. Mitra, Carbon, 43, No. 5: 1015 (2005); https://doi.org/10.1016/j.carbon.2004.11.036
  44. P. Potirak, W. Pecharapa, and W. Techitdheera, Journal of Experimental Nanoscience, 9, No. 1: 96 (2014); https://doi.org/10.1080/17458080.2013.820848
  45. G. Kaushik, M. Kumar, H. Wang, T. Matsuyama, and Y. Ando, J. Phys. Chem. C, 114, No. 11: 5107 (2010); https://doi.org/10.1021/jp911421a
  46. D. J. Borah, D. Saikia, A. Das, P. K. Saikia, and A. T. T. Mostako, Discov. Mater., 3, No. 4: 1 (2023); https://doi.org/10.1007/s43939-023-00041-x
  47. Y. C. Lin, W. Chou, A. S. Susha, S. V. Kershaw, and A. L. Rogach, Nanoscale, 5, No. 8: 3400 (2013); https://doi.org/10.1039/C3NR33928A
  48. P. Dagtepe, V. Chikan, J. Jasinski, and V. J. Leppert, J. Phys. Chem. C, 111, No. 41: 14977 (2007); https://doi.org/10.1021/jp072516b