Modification of Single-Walled Carbon Nanotubes with CdTe Nanoparticles Using Microwave Irradiation
653–665 (2025)
PACS numbers: 61.82.Rx, 68.37.Hk, 78.40.Ri, 78.67.Bf, 78.70.Gq, 79.60.Jv, 81.05.ub
Received 22 January, 2025
Single-walled carbon nanotubes are bonded to thioglycolic acid-coated CdTe nanoparticles for forming hybrid nanostructures. The new nanohybrids are characterized with a special emphasis on the physicochemistry of electron transfer. Spectroscopic evidence confirming the partial transfer of charge density from the functional groups directly to the carbon nanotube is presented. Since nanotubes provide a fast way to transport charge carriers to the electrode, the studies open up the prospects of using such nanostructures to create interfaces for sensor systems.
KEY WORDS: carbon nanotubes, CdTe nanoparticles, microwave irradiation, hybrid nanostructures, charge transfer
REFERENCES
- Z. Shariatinia, Handbook of Carbon-Based Nanomaterials (Eds. S. Thomas, C. Sarathchandran, S. A. Ilangovan, and J. C. Moreno-Piraján) (Elsevier: 2021), Ch. 7, p. 321; https://doi.org/10.1016/B978-0-12-821996-6.00016-6
- M. N. Norizan, M. H. Moklis, S. Z. Ngah Demon, N. A. Halim, A. Samsuri, I. S. Mohamad, V. F. Knight, and N. Abdullah, RSC Adv., 10, No. 71: 43704 (2020); https://doi.org/10.1039/D0RA09438B
- V. Schroeder, S. Savagatrup, M. He, S. Lin, and T. M. Swager, Chem. Rev., 119, No. 1: 599 (2018); https://doi.org/10.1021/acs.chemrev.8b00340
- J. Wang, Electroanalysis, 17, No. 1: 7 (2005); https://doi.org/10.1002/elan.200403113
- C. W. Tan, K. H. Tan, Y. T. Ong, A. R. Mohamed, S. H. S. Zein, and S. H. Tan, Environ. Chem. Lett., 10: 265 (2012); https://doi.org/10.1007/s10311-012-0356-4
- R. Shoukat and M. I. Khan, Microsystem Technologies, 27, No. 12: 4183 (2021); https://doi.org/10.1007/s00542-021-05211-6
- R. Stadler and M. Forshaw, Molecular Electronics, 3D Nanoelectronic Computer Architecture and Implementation (Eds. D. Crawley, K. Nikolic, and M. Forshaw) (Boca Raton: CRC Press: 2020), Ch. 5, p. 90; https://doi.org/10.1201/9780429150081
- M. Zhang, C. Du, Q. Huang, Z. Liao, Y. Deng, W. Huang, and X. Wang, Carbon Nanotube Transistors, Nanocarbon Electronics (Eds. Ch. Zhou, M. Zhang, and C. Yang) (New York: Jenny Stanford Publishing: 2020), Ch. 4, p. 143; https://doi.org/10.1201/9781003043089
- S. Darwin, E. Fantin Irudaya Raj, M. Appadurai, and M. Chithambara Thanu, Energy Systems Design for Low-Power Computing (Eds. R. R. Gatti, Ch. Singh, P. Srividya, and S. Bhat) (Hershey, PA, USA: IGI Global Scientific Publishing: 2023), Ch. 5, p. 67; https://doi.org/10.4018/978-1-6684-4974-5.ch005
- V. Selamneni, N. Bokka, V. Adepu, and P. Sahatiya, Carbon Nanomaterials for Emerging Electronic Devices and Sensors. Carbon Nanomaterial Electronics: Devices and Applications (Eds. A. Hazra and R. Goswami) (Singapore: Springer Singapore: 2021), p. 215; https://doi.org/10.1007/978-981-16-1052-3_10
- S. Mallakpour and E. Khadem, Chemical Engineering Journal, 302: 344 (2016); https://doi.org/10.1016/j.cej.2016.05.038
- L. K. Sarpong, M. Bredol, M. Schönhoff, A. Wegrzynowicz, K. Jenewein, and H. Uphoff, Optical Materials, 86: 398 (2018); https://doi.org/10.1016/j.optmat.2018.10.039
- C. Soldano, Progress in Materials Science, 69: 183 (2015); https://doi.org/10.1016/j.pmatsci.2014.11.001
- D. Aasen, M. P. Clark, and D. G. Ivey, J. Electrochem. Soc., 167, No. 4: 040503 (2020); https://doi.org/10.1149/1945-7111/ab7094
- K. Yadav, N. Khan, and M. Jha, Surface Modified Carbon Nanotubes. Vol. 2: Industrial Applications (Eds. J. Aslam, Ch. M. Hussain, and R. Aslam) (American Chemical Society: 2022), 1425, Ch. 5, p. 101; https://doi.org/10.1021/bk-2022-1425.ch005
- J. Chen and G. Lu, Carbon Nanotube-Nanoparticle Hybrid Structures. Carbon Nanotubes (Eds. J. M. Marulanda) (London: IntechOpen: 2010), Ch. 31; https://doi.org/10.5772/39446
- X. Li, Y. Jia, and A. Cao, ACS Nano, 4, No. 1: 506 (2010); https://doi.org/10.1021/nn901757s
- N. K. Mehra and N. K. Jain, Journal of Drug Targeting, 24, No. 4: 294 (2016); https://doi.org/10.3109/1061186X.2015.1055571
- C. Baslak, M. D. Kars, M. Karaman, M. Kus, Y. Cengeloglu, and M. Ersoz, Journal of Luminescence, 160: 9 (2015); https://doi.org/10.1016/j.jlumin.2014.11.030
- L. Wang, H. Liu, R. M. Konik, J. A. Misewich, and S. S. Wong, Chemical Society Reviews, 42, No. 20: 8134 (2013); https://doi.org/10.1039/c3cs60088b
- A. Hirsch and O. Vostrowsky, Functionalization of Carbon Nanotubes. Functional Molecular Nanostructures. Topics in Current Chemistry. Vol. 245 (Eds. A. D. Schlüter) (Berlin–Heidelberg: Springer: 2005), Ch. 5, p. 193; https://doi.org/10.1007/b98169
- Y. P. Sun, K. Fu, Y. Lin, and W. Huang, Acc. Chem. Res., 35, No. 12: 1096 (2002); https://doi.org/10.1021/ar010160v
- P. W. Chiu, G. S. Duesberg, U. Dettlaff-Weglikowska, and S. Roth, Appl. Phys. Lett., 80, No. 20: 3811 (2002); https://doi.org/10.1063/1.1480487
- K. Balasubramanian and M. Burghard, Small, 1, No. 2: 180 (2005); https://doi.org/10.1002/smll.200400118
- K. Balasubramanian, M. Burghard, and K. Kern, Carbon Nanotubes: Electrochemical Modification, Dekker Encyclopedia of Nanoscience and Nanotechnology. Vol. 7 (Eds. J. A. Schwarz, S. E. Lyshevski, and C. I. Contescu) (New York: Dekker: 2014), p. 507.
- M. Musameh, N. S. Lawrence, and J. Wang, Electrochemistry Communications, 7, No. 1: 14 (2005); https://doi.org/10.1016/j.elecom.2004.10.007
- S. E. Kooi, U. Schlecht, M. Burghard, and K. Kern, Angew. Chem. Int. Ed. Engl., 41, No. 8: 1353 (2002); https://doi.org/10.1002/1521-3773(20020415)41:8<1353::aid-anie1353>3.0.co;2-i
- N. Zydziak, C. Hübner, M. Bruns, and C. Barner-Kowollik, Macromol., 44, No. 9: 3374 (2011); https://doi.org/10.1021/ma200107z
- P. Eskandari, Z. Abousalman-Rezvani, H. Roghani-Mamaqani, and M. Salami-Kalajahi, Advances in Colloid and Interface Science, 294: 102471 (2021); https://doi.org/10.1016/j.cis.2021.102471
- S. S. Qureshi, V. Shah, S. Nizamuddin, N. M. Mubarak, R. R. Karri, M. H. Dehghani, and M. E. Rahman, Journal of Molecular Liquids, 356: 119045 (2022); https://doi.org/10.1016/j.molliq.2022.119045
- M. I. Hussein, S. S. Jehangir, I. J. Rajmohan, Y. Haik, T. Abdulrehman, Q. Clément, and N. Vukadinovic, Scientific Reports, 10, No. 1: 16013 (2020); https://doi.org/10.1038/s41598-020-72928-1
- E. L. Frankevich, Chemical Generation and Reception of Radio and Microwaves (New York: VCH Publishers: 1994).
- E. H. Hong, K.-H. Lee, S. H. Oh, and C.-G. Park, Adv. Funct. Mater., 13, No. 12: 961 (2003); https://doi.org/10.1002/adfm.200304396
- T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye and J. M. Tour, Chem. Mater., 15, No. 21: 3969 (2003); https://doi.org/10.1021/cm034530g
- T. M. Barnes, X. Wu, J. Zhou, A. Duda, J. van de Lagemaat, T. J. Coutts, C. L. Weeks, D. A. Britz, and P. Glatkowski, Appl. Phys. Lett., 90, No. 24: 243503 (2007); https://doi.org/10.1063/1.2748078
- M. Houshmand, M. H. Zandi, and N. E. Gorji, Superlattices and Microstructures, 88: 365 (2015); https://doi.org/10.1016/j.spmi.2015.09.023
- D. M. Guldi, G. M. A. Rahman, V. Sgobba, N. A. Kotov, D. Bonifazi, and M. Prato, J. Am. Chem. Soc., 128, No. 7: 2315 (2006); https://doi.org/10.1021/ja0550733
- N. Gan, J. Zhou, P. Xiong, F. Hu, Y. Cao, T. Li, and Q. Jiang, Toxins, 5, No. 5: 865 (2013); https://doi.org/10.3390/toxins5050865
- B. Zebli, H. A. Vieyra, I. Carmeli, A. Hartschuh, J. P. Kotthaus, and A. W. Holleitner, Phys. Rev. B, 79, No. 20: 205402 (2009); https://doi.org/10.1103/PhysRevB.79.205402
- S. Leubner, G. Katsukis, and D. M. Guldi, Faraday Discussions, 155: 253 (2012); https://doi.org/10.1039/c1fd00102g
- Y. Khalavka, B. Mingler, G. Friedbacher, G. Okrepka, L. Shcherbak, and O. Panchuk, phys. stat. sol. (a), 207: 370 (2010); https://doi.org/10.1002/pssa.200925260
- M. S. Raghuveer, S. Agrawal, N. Bishop, and G. Ramanath, Chemistry of Materials, 18, No. 6: 1390 (2006); https://doi.org/10.1021/cm051911g
- Y. Wang, Z. Iqbal, and S. Mitra, Carbon, 43, No. 5: 1015 (2005); https://doi.org/10.1016/j.carbon.2004.11.036
- P. Potirak, W. Pecharapa, and W. Techitdheera, Journal of Experimental Nanoscience, 9, No. 1: 96 (2014); https://doi.org/10.1080/17458080.2013.820848
- G. Kaushik, M. Kumar, H. Wang, T. Matsuyama, and Y. Ando, J. Phys. Chem. C, 114, No. 11: 5107 (2010); https://doi.org/10.1021/jp911421a
- D. J. Borah, D. Saikia, A. Das, P. K. Saikia, and A. T. T. Mostako, Discov. Mater., 3, No. 4: 1 (2023); https://doi.org/10.1007/s43939-023-00041-x
- Y. C. Lin, W. Chou, A. S. Susha, S. V. Kershaw, and A. L. Rogach, Nanoscale, 5, No. 8: 3400 (2013); https://doi.org/10.1039/C3NR33928A
- P. Dagtepe, V. Chikan, J. Jasinski, and V. J. Leppert, J. Phys. Chem. C, 111, No. 41: 14977 (2007); https://doi.org/10.1021/jp072516b