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Одностінні вуглецеві нанотрубки було зв’язано з наночастинками CdTe, 

покритими тіогліколевою кислотою, з утворенням гібридних наностру-

ктур. Нові наногібриди було охарактеризовано з особливим акцентом 

на фізико-хемію перенесення електрона. Представлено спектроскопічні 

докази, що підтверджують часткове перенесення густини заряду з фун-

кціональних груп безпосередньо на вуглецеву нанотрубку. Оскільки 

нанотрубки забезпечують швидкий шлях транспортування носіїв заря-

ду до електроди, проведені дослідження відкривають перспективи за-

стосування таких наноструктур для створення інтерфейсів сенсорних 

систем. 

Single-walled carbon nanotubes are bonded to thioglycolic acid-coated 

CdTe nanoparticles for forming hybrid nanostructures. The new nanohy-

brids are characterized with a special emphasis on the physicochemistry of 

electron transfer. Spectroscopic evidence confirming the partial transfer 

of charge density from the functional groups directly to the carbon nano-

tube is presented. Since nanotubes provide a fast way to transport charge 

carriers to the electrode, the studies open up the prospects of using such 

nanostructures to create interfaces for sensor systems. 
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1. ВСТУП 

Óнікальні властивості вуглецевих нанотрубок (ВНТ) роблять їх 
привабливими матеріялами для створення нових електронних 
пристроїв: одноелектронних транзисторів, молекулярних діод, 
сенсорів, елементів пам’яті та логічних вентилів [1–11]. Велика 
кількість застосувань залежить від хемічного модифікування 
ВНТ органічними та неорганічними матеріялами. Серед неорга-
нічних сполук для модифікування поверхонь ВНТ використову-
ються метали, солі металів, оксиди та наночастинки (НЧ) на ос-
нові металів [12–15]. 
 ВНТ, декоровані НЧ, утворюють новий клас гібридних нано-
матеріялів, які потенційно можуть виявити додаткові нові фізи-
чні та хемічні властивості, зумовлені взаємодією між ВНТ і при-
єднаними НЧ. Ці гібридні наноматеріяли є багатообіцяючими бу-
дівельними блоками для різних застосувань, включаючи газові 
датчики, паливні елементи, сонячні елементи, літій-іонні батареї, 
елементи для зберігання водню та прозорі провідні електроди 
[16–21]. 
 Однак на шляху створення ефективних гібридних наноматері-
ялів на основі ВНТ, залишаються невирішеними проблеми, 
пов’язані з методами функціоналізації ВНТ. Типові шляхи фун-
кціоналізації ВНТ включають вологе кислотне хемічне окиснен-
ня, етерифікацію, активацію діімідом, електрохемічне модифіку-
вання або гідрофобну адсорбцію ароматичних похідних [22–24]. 
Багато з цих методів зазвичай передбачають кілька етапів, що 
включають кип’ятіння з сильними кислотами у поєднанні з уль-
тразвуковим обробленням [25]. Таке аґресивне оброблення спри-
чиняє пошкодження ВНТ через появу тріщин і високу концент-
рацію домішок через тривалий час оброблення. Все це призво-
дить до низької якости одержаних наноструктур. Незважаючи на 
те, що електрохемічне модифікування є м’яким, застосування 
його обмежено електропровідними ВНТ [26–28]. 
 Альтернативні підходи до функціоналізації, які використову-
ють неінвазивні та/або нетеплові збудження, пропонують можли-
вості для усунення таких недоліків, наприклад, завдяки викори-
станню полімерного обгортання для нековалентної функціоналі-
зації ВНТ за допомогою макромолекул [29–31]. Інший альтерна-
тивний метод функціоналізації використовує мікрохвильове 
опромінення ВНТ [32–33]. 
 Мікрохвильове випромінення є добре відомим неінвазивним і 
чистим інструментом оброблення, який широко використовується 
для активації або пришвидшення хемічних реакцій [34]. Як пра-
вило, мікрохвильова енергія понижує кінетичний бар’єр для ре-
акцій, змінюючи енергію коливань зв’язків і/або конфіґурацію 
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конкретних реаґентів. Така активація може забезпечити розши-
рений діяпазон реакцій з нижчими температурами та/або скоро-
ченим часом реакції, що уможливлює уникнути небажаних побі-
чних реакцій і продуктів. Мікрохвильове випромінення викорис-
товується як для синтези ВНТ [35], так і для з’єднання ВНТ з 
наночастинками за допомогою ґенерування та реконструювання 
дефектів [36]. 
 В даній роботі було адаптовано новий екологічно чистий підхід 
з використанням мікрохвиль для швидкого модифікування одно-
стінних ВНТ наночастинками CdTe без використання аґресивних 
окиснювачів (наприклад HNO3) з ультразвуковим обробленням. 
Цей підхід пропонує новий спосіб ефективного створення гібрид-
них наноструктур за рахунок того, що весь процес відбувається в 
один етап, що дає змогу в подальшому масштабувати технологію 
до промислового рівня. Одностінні ВНТ (ОСВНТ) легко утворю-
ють високопрозору й електропровідну тонку плівку, яка може 
мати різне прикладне застосування [37]. Ó поєднанні з наночас-
тинками CdTe, який є широкозонним напівпровідником, відкри-
вається можливість створення гібридних наноструктур для засто-
сування в якості компонент прозорих сонячних елементів, сенсо-
рів, оптоелектронних пристроїв, систем зберігання енергії тощо 
[38–42]. 

2. МАТЕРІЯЛИ ТА МЕТОДИ 

Для досліджень було використано одностінні ВНТ, функціоналі-
зовані COOH-групами D15L1–5–COOH (NanoLab, Inc., США). За 
інформацією для споживача: зовнішній діяметер — 155 нм, 
довжина — 1–5 мкм, вміст COOH-груп — 2–7 мас.%, питома по-
верхня — 220 м2/г. 
 Наночастинки CdTe, стабілізовані тіолами, було одержано за 
кімнатної температури з дотриманням методи, описаної в [43]. 
 Для приготування зразків робили навіски ОСВНТ по 0,03 г в 
трьох окремих флаконах, до яких додавалося по 1 мл дейонізо-
ваної води. Одержані зразки ОСВНТ були дисперґовані в ультра-
звуковій ванні за частоти ультразвуку у 50 кÃц, часу дії у 10 
хвилин і температури у 30 ґрадусів за Цельсієм. Потім до одного 
флакону підготовленої суспензії ОСВНТ додавали 1 мл суспензії 
наночастинок CdTe та завантажували разом з одним флаконом 
суспензії чистих ОСВНТ у мікрохвильову піч (модель LG MS-
2042), оснащену магнетроном потужністю у 700 Вт, що працює 
на частоті у 2,45 ÃÃц. Для мінімізації перегріву розчинника та 
підвищення тиску в закритому флаконі здійснювали циклічні 
мікрохвильові експозиції з часом увімкнення у 30 с за 100%-
потужности, розділені 10-секундними інтервалами часу вимк-
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нення. Загальна тривалість експозиції становила 2400 с. Такі па-
раметри було підібрано з урахуванням даних досліджень з одер-
жання подібних наноструктур [44–47]. 
 Загалом для досліджень було підготовлено зразки чистих 
ОСВНТ, чистих ОСВНТ, оброблених мікрохвильовим випромі-
ненням, і гібридних структур ВНТ, модифікованих наночастин-
ками CdTe (ОСВНТ/CdTe). Всі зразки підготовлено у вигляді су-
спензій. 
 Рентґенівські фотоелектронні спектри (РÔС) остовних рівнів 
елементів було одержано на рентґенівському спектрометрі 
PERKIN ELMER PHI 5600. Робочий вакуум під час проведення 
експерименту був у 10

7 Па. Використовувалася алюмінійова 
анода з енергією лінії AlK у 1486,6 еВ. Діяметер променя був у 
400 мкм. Для компенсації заряду зразка використовувалася еле-
ктронна гармата. Роздільча здатність по енергії складала 0,1 еВ. 
Калібрування енергій зв’язку проводилося по Au4f-лінії у 87,5 
еВ. Для досліджень зразки суспензій наносилися на очищену 
пластину кремнію та висушувалися за кімнатної температури 
упродовж 30 хвилин, після чого вносилися у вакуумну шлюзову 
камеру. Розкладення спектрів на компоненти проводилося за 
програмою XPSPeak. Початкова ширина на половині висоти піка 
компонент розкладення вибиралася за значенням для чистої спо-
луки. Через різне оточення та хемічний зв’язок ширина на поло-
вині висоти може дещо змінюватися. Ôорма кривої компонент 
розкладення задавалася у вигляді Лоренціяна з невеликою долею 
Ґавсіяна, який визначається апаратною функцією. Таким чином, 
форма кривої компоненти розкладення представляється у вигляді 
згортки двох функцій — Лоренціяна та Ґавсіяна. 
 Спектрофотометричні дослідження зразків проводилися на од-
нопроменевому спектрофотометрі Spekol 1500 у діяпазоні довжин 
хвиль 190–1100 нм. Для досліджень зразки суспензій додавали 
безпосередньо у кварцову кювету з дистильованою водою. Ета-
лонний розчин, відносно якого було одержано оптичні спектри 
вбирання, — дистильована вода. 
 Електронну мікроскопію гібридних структур ОСВНТ/CdTe 
проводили за допомогою сканівного електронного мікроскопа 
(СЕМ) TESCAN MIRA3. Для досліджень зразки суспензій нано-
силися на провідне скло ITO та висушувалися за кімнатної тем-
ператури. 

3. РЕЗУЛЬТАТИ Й ОБГОВОРЕННЯ 

Для НЧ CdTe спостерігається широке розмите плече для оптич-
ного вбирання в околі 425–500 нм (рис. 1, а), що відображає пе-
рехід 1S(e)–1S3/2 та відповідає розмірам НЧ від 2,2 нм до 4,5 нм 
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[48, 49]. Розмитість піка пов’язана з наявністю полідисперсії ро-
змірів НЧ [39]. 
 Під час формування гібридних наноструктур ОСВНТ/CdTe спо-
стерігаються утворення розміром у 7–9 нм за рахунок формуван-
ня кластерів з НЧ на поверхні ОСВНТ (рис. 2, а, б). Водночас ві-
дбувається зміщення піка оптичного вбирання на 375 нм 
(рис. 1, а), що вказує на взаємодію НЧ з ВНТ. Збільшення роз-
міру НЧ без зв’язування з поверхнею ОСВНТ приводило б до 
зміщення піка в область більших довжин хвиль [50, 51] з одно-
часною появою піка вбирання, характерного для чистих ОСВНТ, 
який спостерігається на 230 нм (рис. 1, б) і зумовлений –*-

  
а      б 

Рис. 1. Оптичні спектри вбирання зразків: а) НЧ CdTe і ОСВНТ/CdTe; 
б) чисті ОСВНТ.1 

  
а      б 

Рис. 2. СЕМ-зображення гібридних наноструктур ОСВНТ/CdTe за різно-
го масштабу.2 
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переходом ароматичного кільця C=C. Чітко видно, що на поверх-
ні ОСВНТ з формуванням гібридних структур ОСВНТ/CdTe зга-
сає 90% випромінення CdTe-НЧ порівняно з чистими CdTe-НЧ. 
Згасання випромінення може бути пов’язане з перенесенням еле-
ктронів з фотозбудженого CdTe на ВНТ. 
 Аналіза рентґенівських фотоелектронних спектрів досліджува-
них зразків дала змогу однозначно інтерпретувати енергетичні 
зв’язки, що превалюють під час формування інтерфейсу 
ОСВНТ/CdTe. 1s-спектр Карбону (рис. 3, табл. 1) відображає ене-

 

Рис. 3. РÔС С1s-спектри зразків: a) гібридні структури ОСВНТ/CdTe 
НЧ; б) чисті ОСВНТ після мікрохвильового опромінювання; в) чисті 
ОСВНТ без мікрохвильового опромінювання.3 

ТАБЛИЦЯ 1. Енергетичне положення [еВ] і ширина на половині висоти 
(у дужках) складових компонент остовних C1s-спектрів зразків.4 

Компоненти спектру 
sp2 sp3 

C–O 
(C–OH) 

С=O O=C–O –* 
Зразок 

Ãібридні структури 
ОСВНТ/CdTe-НЧ 

284,2 
(0,6) 

284,6 
(0,5) 

285,1 
(0,7) 

286,1 
(1,2) 

288,4 
(2,2) 

291,2 
(3,3) 

Чисті ОСВНТ після мікро-
хвильового опромінювання 

284,2 
(0,5) 

284,6 
(0,5) 

285,3 
(1,1) 

286,6 
(1,3) 

288,4 
(1,9) 

290,8 
(2,4) 

Чисті ОСВНТ без мікрох-
вильового опромінювання 

284,2 
(0,6) 

284,5 
(0,5) 

285,1 
(0,7) 

286,1 
(1,3) 

288,7 
(2,3) 

291,4 
(3,7) 

Примітка: похибка мірянь — 0,1 еВ. 
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ргію зв’язку Карбону у різних конформаціях: sp2, sp3, C–O (C–
OH), C=O, O=C–O, * відповідно. За взаємодії ОСВНТ з наноча-
стинками CdTe зазнає значних змін компонента –*, яка відо-
бражає зв’язок C=C між Карбоном на поверхні нанотрубок. 
 Через опромінення чистих ОСВНТ мікрохвилями відбувається 
зміщення максимуму енергії цієї компоненти на 0,6 еВ у бік 
зменшення енергії зв’язку та зменшення значення ширини на 
половині висоти, що зумовлено появою додаткової електронної 
густини. За взаємодії ОСВНТ з CdTe-НЧ спостерігається зворот-
ній процес — зміщення максимуму компоненти * на 0,4 еВ у 
бік збільшення енергії зв’язку та збільшення значення ширини 
на половині висоти, що свідчить про відтік електронної густини 
за формування гібридних наноструктур ОСВНТ/CdTe. 
 Значні зміни спостерігаються у формі 1s-спектрів Оксиґену із 
збереженням положень основних компонент спектру в межах по-
хибки мірянь (рис. 4, табл. 2). Для чистих ОСВНТ без хвильового 
опромінювання спектер O1s характеризується двома піками на 
531,6 еВ і 533,3 еВ, що відповідають хемічним зв’язкам C=O та 
C–O (C–OH) відповідно. 

 

Рис. 4. РÔС O1s-спектри зразків: a) гібридні структури ОСВНТ/CdTe 
НЧ; б) чисті ОСВНТ після мікрохвильового опромінювання; в) чисті 
ОСВНТ без мікрохвильового опромінювання.5 



660 Н. А. КÓРÃАН, В. Л. КАРБІВСЬКИЙ, С. І. ШÓЛИМА та ін. 

 Під час обробляння ОСВНТ мікрохвильовим випроміненням 
відбувається зменшення піка C=O та поява нового піка на 535,2 
еВ, який, швидше за все, відповідає за обірвані Оксиґенові 
зв’язки, що утворюються внаслідок взаємочину випромінення з 
функціональними групами COOH– на поверхні нанотрубок. Вза-
ємодія ОСВНТ з НЧ CdTe за мікрохвильового опромінювання 
приводить до значного зменшення інтенсивности піка, що відпо-
відає за зв’язок C–O (C–OH). 
 Пік, що, швидше за все, відповідає за обірвані Оксиґенові 
зв’язки, зміщується на 0,3 еВ у бік збільшення енергії зв’язку 
порівняно зі зразками ОСВНТ після мікрохвильового оброблення. 
Таке зміщення у бік збільшення енергії зв’язку з одночасним 
зменшенням інтенсивности піка свідчить про відтік електронної 
густини з обірваних Оксиґенових зв’язків за рахунок часткового 
відновлення їх з формуванням зв’язків C=O з йонами Оксиґену 
тіолових груп з поверхні CdTe-НЧ під час формування гібридних 
наноструктур ОСВНТ/CdTe. 
 Спираючись на одержані дані можна припустити наступний 
механізм формування гібридних наноструктур ОСВНТ/CdTe 
(рис. 5): за мікрохвильового опромінювання відбувається утво-
рення обірваних Оксиґенових зв’язків, на які відбувається приє-
днання наночастинок CdTe через об’єднання з Оксиґеном тіоло-
вих груп, і формування гібридних наноструктур ОСВНТ/CdTe. 
Воднораз відбувається транспорт електронного заряду з функціо-
нальних груп безпосередньо на ВНТ, що підвищує провідність 
таких гібридних наноструктур у порівнянні з чистими ОСВНТ. 

4. ВИСНОВКИ 

Розроблено одноетапний спосіб одержання гібридних нанострук-
тур ОСВНТ/CdTe з використанням мікрохвильового опромінення. 

ТАБЛИЦЯ 2. Енергетичне положення [еВ] і ширина на половині висоти 
(у дужках) складових компонент остовних O1s-спектрів зразків.6 

Компоненти спектру 
С=O 

C–O  
(C–OH) 

Обірвані  
Оксиґенові зв’язки Зразок 

Ãібридні структури ОСВНТ/CdTe-НЧ 
531,4 
(1,9) 

533,4 
(2,0) 

535,5  
(1,9) 

Чисті ОСВНТ після мікрохвильового 
опромінювання 

531,6 
(1,9) 

533,4 
(1.9) 

535,2  
(1,9) 

Чисті ОСВНТ без мікрохвильового 
опромінювання 

531,6 
(1,9) 

533,3 
(1,9) 

— 

Примітка: похибка мірянь — 0,1 еВ. 
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 Встановлено, що для чистих ОСВНТ спектер 1s Оксиґену хара-
ктеризується двома піками у 531,6 еВ і 533,3 еВ, що відповіда-
ють хемічним зв’язкам C=O та C–O (C–OH) відповідно. 
 Під час обробляння ОСВНТ мікрохвильовим опроміненням від-
бувається зменшення піка C=O та поява нового піка на 535,2 еВ, 
який, швидше за все, відповідає за обірвані Оксиґенові зв’язки, 
що утворюються внаслідок взаємочину випромінення з функціо-
нальними групами COOH– на поверхні нанотрубок. 
 За взаємодії ОСВНТ з CdTe-НЧ спостерігається значне змен-
шення інтенсивности піка, що відповідає за зв’язок C–O (C–OH). 
Це зменшення зумовлене зменшенням кількости зв’язків C–O 
(C–OH) за рахунок утворення зв’язків С=О з наночастинками? -
CdTe. 
 Запропоновано пояснення механізму електронного транспорту 
за формування гібридних наноструктур ОСВНТ/CdTe, який поля-
гає в утворенні обірваних Оксиґенових зв’язків під час мікрох-
вильового опромінювання, на які відбувається ковалентне приєд-
нання наночастинок CdTe та формування гібридних наноструктур 
ОСВНТ/CdTe. Воднораз відбувається транспорт електронного за-
ряду з функціональних груп безпосередньо на ВНТ, що підвищує 
провідність таких гібридних наноструктур у порівнянні з чисти-
ми ОСВНТ. 
 Проведені дослідження відкривають перспективи простого оде-
ржання гібридних наноструктур ОСВНТ/CdTe для створення ін-
терфейсів (перехідних структур), що з’єднують наноматеріяли чи 
то нанооб’єкти з мікроскопічними пристроями або тканинами ‪‪‪у 
біомедичних інвазивних пристроях і сенсорах.                                   ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ 

 

Рис. 5. Схематична інтерпретація механізму приєднання наночастинок 
CdTe до ОСВНТ.7 
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3 Fig. 3. XPS C1s spectra of the samples: a) hybrid structures of SWCNT/CdTe NP; б) pure 

SWCNT after microwave irradiation; в) pure SWCNT without microwave irradiation. 
4 TABLE 1. Energy position [eV] and width at half height (in parentheses) of the components 
of C1s core-level spectra for the samples. 
5 Fig. 4. XPS O1s spectra of the samples: a) hybrid structures of SWCNT/CdTe NP; б) pure 

SWCNT after microwave irradiation; в) pure SWCNT without microwave irradiation. 
6 TABLE 2. Energy position [eV] and width at half height (in parentheses) of the components 

of O1s core-level spectra for the samples. 
7 Fig. 5. Schematic interpretation for the attachment mechanism of the CdTe nanoparticles to 
SWCNT. 


