Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 2

 



Download the full version of the article (in PDF format)

Atyaf S. AL RAWAS1, Enas G. YONIS1, and A. J. JARJEES ALSOOFY2

1College of the Dentistry, Department of the Basic Science, Mosul University, Mosul, Iraq
2College of Science, Department of Physics, Mosul University, Mosul, Iraq


Study of Characteristics of Semiconductor GaAs Nanoparticles Prepared by Laser Ablation Method

515–521 (2025)

PACS numbers: 07.60.Rd, 78.20.Ci, 78.40.Fy, 78.67.Bf, 79.20.Eb, 81.16.Mk, 82.70.Dd

Gallium arsenide GaAs nanoparticles are prepared in water using laser ablation method. The optical properties and energy gap of the colloidal solution are investigated using UV-visible spectrometer; the absorption peaks are observed between 200 and 300 nm wavelength, and the energy gap is calculated of about 1.86 eV. Zeta potential value is of about 22.18 mV that gives the impression of acceptable stability of the colloidal solution.

KEY WORDS: gallium arsenide GaAs, laser ablation, zeta potential, optical properties of GaAs

DOI:  https://doi.org/10.15407/nnn.23.02.0515

REFERENCES
  1. J. Kleperis, J. Zubkans, and A. R. Lusis, Optical Organic and Semiconductor Inorganic Materials, 2968: 186 (1997); https://doi.org/10.1117/12.266832
  2. S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, Molecules, 25, Iss. 1: 112 (2020); https://doi.org/10.3390/molecules25010112
  3. D. Sundaram, V. Yang, and R. A. Yetter, Progress in Energy and Combustion Science, 61: 293 (2017); https://doi.org/10.1016/j.pecs.2017.02.002
  4. J. Zhang, M. Terrones, C. R. Park, R. Mukherjee, M. Monthioux, N. Koratkar, and A. Bianco, Carbon, 98, Iss. 70: 708 (2016); https://doi.org/10.1016/j.carbon.2015.11.060
  5. P. A. Patil, S. Dalvi, V. Dhaygude, and S. D. Shete, Indo Global Journal of Pharmaceutical Sciences, 12: 183 (2022); https://doi.org/10.35652/IGJPS.2022.12022
  6. M. Kichu, T. Malewska, K. Akter, I. Imchen, D. Harrington, J. Kohen, and J. F. Jamie, Journal of Ethnopharmacology, 166: 5 (2015); https://doi.org/10.1016/j.jep.2015.02.053
  7. A. Ramazan and H. Misak, Journal of Nano Education, 3, Iss. 1–2: 13 (2011); https://doi.org/10.1166/jne.2011.1012
  8. L. M. Abduljabbar, Iraqi Journal of Laser, 13: 29 (2014); https://doi.org/10.31900/ijl.v13iA.71
  9. T. Sharifi, D. Dorranian, and M. J. Torkamany, Journal of Experimental Nanoscience, 8, Iss. 6: 808 (2013); https://doi.org/10.1080/17458080.2011.608729
  10. K. Satoh, Y. Kakehi, A. Okamoto, S. Murakami, K. Moriwaki, and T. Yotsuya, Thin Solid Films, 516, Iss. 17: 5814 (2008); https://doi.org/10.1016/j.tsf.2007.10.055
  11. T. Amakali, L. S. Daniel, V. Uahengo, N. Y. Dzade, and N. H. de Leeuw, Crystals, 10: 132 (2020); https://doi.org/10.3390/cryst10020132
  12. R. H. AL-Saqa and I. K. Jassim, Digest Journal of Nanomaterials & Biostructures, 18, No. 1: 165 (2022); https://doi.org/10.15251/DJNB.2023.181.165
  13. S. Ajith, F. Almomani, A. Elhissi, and G. Husseini, Helyion, 20, Iss. 9: 1 (2023); https://doi.org/10.1016/j.heliyon.2023.e21227
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement