Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 2

 



Download the full version of the article (in PDF format)

O. M. BORDUN1, I. O. BORDUN1, I. I. MEDVID1, D. M. MAKSYMCHUK1, I. Yo. KUCHARSKYY1, I. M. KOFLIUK1, and D. S. LEONOV2

1Ivan Franko National University of Lviv, 50, Drahomanov Str., UA-79005 Lviv, Ukraine
2Technical Centre, N.A.S. of Ukraine, 13, Pokrovska Str., UA-04070 Kyiv, Ukraine


Surface Morphology and Low-Temperature Luminescence of Thin (Y0.06Ga0.94)2O3:Cr3+ Films

437–448 (2025)

PACS numbers: 61.72.Mm, 68.37.Ps, 68.55.J-, 78.55.Hx, 78.60.Lc, 81.15.Cd, 81.40.Tv

Thin films of (Y0.06Ga0.94)2O3:Cr are obtained by radio-frequency (RF) ion-plasma sputtering in an argon atmosphere on amorphous -SiO2 substrates. The surface morphology of the obtained films is studied by means of AFM. The low-temperature (8.6 K) luminescence of the thin films of (Y0.06Ga0.94)2O3:Cr3+ under excitation by synchrotron radiation (22.14 eV and 7.75 eV) is studied. The obtained luminescence spectra are analysed according to excitation energy. A high-energy shift of the R1-line in the spectra of the activator luminescence of the Cr3+ ion in the thin films of (Y0.06Ga0.94)2O3:Cr3+ is found relative to the same for single crystal samples. This shift is analysed in the form of a nephelauxetic effect.

KEY WORDS: gallium oxide, yttrium oxide, chromium activator, thin films, nanocrystals, photoluminescence, synchrotron radiation

DOI:  https://doi.org/10.15407/nnn.23.02.0437

REFERENCES
  1. Z. Galazka, S. Ganschow, A. Fiedler, R. Bertram, D. Klimm, K. Irmscher, R. Schewski, M. Pietsch, M. Albrecht, and M. Bickermann, J. Cryst. Growth, 486: 82 (2018); https://doi.org/10.1016/j.jcrysgro.2018.01.022
  2. M. He, Q. Zeng, and L. Ye, Crystals, 13, No. 10: 1434 (2023); https://doi.org/10.3390/cryst13101434
  3. V. Vasyltsiv, A. Luchechko, Y. Zhydachevskyy, L. Kostyk, R. Lys, D. Slobodzyan, R. Jakieła, B. Pavlyk and A. Suchocki, J. Vacuum Science & Technol. A, 39, No. 3: 033201 (2021); https://doi.org/10.1116/6.0000859
  4. S. Kumar and R. Singh, phys. status solidi (RRL), 7, No. 10: 781 (2013); https://doi.org/10.1002/pssr.201307253
  5. E. Nogales, J. A. García, B. Méndez, and J. Piqueras, J. Appl. Phys., 101, No. 3: 033517 (2007); https://doi.org/10.1063/1.2434834
  6. S. M. Xu, W. Ge, X. Zhang, P. Zhang, and Y. Li, J. of Luminescence, 246, 118831 (2022); https://doi.org/10.1016/j.jlumin.2022.118831
  7. R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, Appl. Phys. Lett., 94, No. 22: 222102 (2009); https://doi.org/10.1063/1.3147197
  8. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 86, No. 6: 1010 (2020); https://doi.org/10.1007/s10812-020-00932-4
  9. D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, and W. Tang, Materials Today Physics, 11: 100157 (2019); https://doi.org/10.1016/j.mtphys.2019.100157
  10. M. Alonso-Orts, E. Nogales, J. M. San Juan, M. L. Nó, J. Piqueras, and B. Mėndez, Phys. Rev. Appl., 9: 064004 (2018); http://dx.doi.org/10.1103/PhysRevApplied.9.064004
  11. M. Crozzolin, C. Belloni, J. Xu, T. Nakanishi, J. Ueda, S. Tanabe, F. Dallo, E. Balliana, A. Saorin, F. Rizzolio, D. Cristofori, P. Riello, A. Benedetti, and M. Back, J. Mater. Chem. C, 12, No. 29: 10929 (2024); https://doi.org/10.1039/D4TC01386G
  12. D. M. Esteves, A. L. Rodrigues, L. C. Alves, E. Alves, M. I. Dias, Z. Jia, W. Mu, K. Lorenz, and M. Peres, Scientific Reports, 13: 4882 (2023); https://doi.org/10.1038/s41598-023-31824-0
  13. T. Minami, T. Nakatani, and T. Miyata, J. Vac. Sci. Technol. A, 18, No. 4: 1234 (2000); https://doi.org/10.1116/1.582332
  14. A. K. Saikumar, Sh. D. Nehate, and K. B. Sundaram, ECS J. of Solid State Science and Technol., 8, No. 7: Q3064 (2019); https://doi.org/10.1149/2.0141907jss
  15. O. M. Bordun, B. O. Bordun, I. I. Medvid, and I. Yo. Kukharskyy, Acta Physica Polonica A, 133, No. 4: 910 (2018); https://doi.org/10.12693/APhysPolA.133.910
  16. K. H. Choi and H. C. Kang, Materials Letters, 123: 160 (2014); https://doi.org/10.1016/j.matlet.2014.03.038
  17. T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, Appl. Phys. Lett., 76, No. 12: 1549 (2000); https://doi.org/10.1063/1.126092
  18. C. B. Willingham, J. M. Wahl, P. K. Hogan, L. C. Kupferberg, T. Y. Wong, and A. M. De, Proc. SPIE, 5078: 179 (2003); https://doi.org/10.1117/12.500986
  19. O. M. Bordun, I. M. Bordun, and S. S. Novosad, J. Appl. Spectr., 62, No. 6: 1060 (1995); https://doi.org/10.1007/BF02606760
  20. E. F. Armendáriz-Alonso, O. Meza, E. G. Villabona-Leal, and Elías Pérez, J. Sol–Gel Sci. and Technol., 111: 216 (2024); https://doi.org/10.1007/s10971-024-06450-5
  21. K. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology: — Sputtering of Compound Materials (William Andrew Inc.: 2004)
  22. O. M. Bordun, B. O. Bordun, I. J. Kukharskyy, I. I. Medvid, O. Ya. Mylyo, M. V. Partyka, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 17, Iss. 1: 123 (2019); https://doi.org/10.15407/nnn.17.01.123
  23. https://photonscience.desy.de/facilities/petra_iii/beamlines/p66_superlumi/index_eng.html
  24. C. V. Thompson, Solid State Phys., 55: 269 (2001); https://doi.org/10.1016/S0081-1947(01)80006-0
  25. C. V. Thompson, J. Appl. Phys., 58: 763 (1985); https://doi.org/10.1063/1.336194
  26. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. I. Polovynko, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 1: 159 (2021); https://doi.org/10.15407/nnn.19.01.159
  27. O. M. Bordun, I. I. Medvid, I. Yo. Kukharskyy, and B. O. Bordun, Phys. and Chem. of Solid State, 17, No. 1: 53 (2016); https://doi.org/10.15330/pcss.17.1.53-59
  28. E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett., 86, No. 11: 113112 (2005); https://doi.org/10.1063/1.1883713
  29. H. Tang, N. He, Z. Zhu, M. Gu, B. Liu, J. Xu, M. Xu, L. Chen, J. Liu, and X. Ouyang, Appl. Phys. Lett., 115, No. 11: 071904 (2019); https://doi.org/10.1063/1.5110535
  30. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 84, No. 1: 46 (2017); https://doi.org/10.1007/s10812-017-0425-3
  31. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013); https://doi.org/10.1007/s10812-013-9832-2
  32. J. B. Prasanna Kumar, G. Ramgopal, D. V. Sunitha, B. Daruka Prasad, H. Nagabhushana, Y. S. Vidya, K. S. Anantharaju, S. C. Prashantha, S. C. Sharma, and K. R. Prabhakara, Luminescence: J. Biol. Chem. Lum., 32, No. 3: 414 (2017); https://doi.org/10.1002/bio.3197
  33. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, D. M. Maksymchuk, and I. I. Medvid, Phys. and Chem. of Solid State, 24, No. 3: 490 (2023); https://doi.org/10.15330/pcss.24.3.490-494
  34. R. Rao, A. M. Rao, B. Xu, J. Dong, S. Sharma, and M. K. Sunkara, J. Appl. Phys., 98, No. 9: 094312 (2005); https://doi.org/10.1063/1.2128044
  35. B. M. Weckhuysen, P. Van Der Voort, and G. Catana, Spectroscopy of Transition Metal Ions on Surfaces (Leuven University Press: 2000).
  36. A. Luchechko, V. Vasyltsiv, Ya. Zhydachevskyy, M. Kushlyk, S. Ubizskii, and A. Suchocki, J. Phys. D: Appl. Phys., 53, No. 35: 354001 (2020); https://doi.org/10.1088/1361-6463/ab8c7d
  37. Y. Tokida and S. Adachi, J. Appl. Phys., 112, No. 6: 063522 (2012); https://doi.org/10.1063/1.4754517
  38. C. Remple, L. M. Barmore, J. Jesenovec, J. S. McCloy, and M. D. McCluskey, J. Vac. Sci. Teshnol. A, 41: 022702 (2023); https://doi.org/10.1116/6.0002340
  39. H. Yusa and M. Miyakawa, J. Appl. Phys., 137, No. 3: 035902 (2025); https://doi.org/10.1063/5.0246260
  40. D. Vollath, F. D. Fischer, and D. Holec, Beilstein J. Nanotechnol., 9: 2265 (2018); https://doi.org/10.3762/bjnano.9.211
  41. P. J. Dereń, A. Watras, and D. Stefańska, Opt. Spectrosc., 131: 795 (2023); https://doi.org/10.1134/S0030400X23070032
  42. J. G. Zhang, B. Li, C. T. Xia, J. Xu, Q. Deng, X. D. Xu, F. Wu, W. S. Xu, H. S. Shi, G. Q. Pei, and Y. Q. Wu, Sci. China Ser. E-Tech. Sci., 50, No. 1: 51 (2007); https://doi.org/10.1007/s11431-007-2026-5
  43. C. K. Jørgensen, The Nephelauxetic Series P. 73–124 Progress in Inorganic Chemistry (Ed. F. A. Cotton) (New York–London: Interscience Publishers: 1962), vol. 4.
  44. M. G. Brik, S. J. Camardello, A. M. Srivatsava, N. M. Avram, and A. Suchotcki, ECS J. Solid State. Sci. Technol., 5: R3067 (2016); https://doi.org/10.1149/2.0091601jss
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement