2Technical Center of NAS of Ukraine, 13 Pokrovska Str., 04070 Kyiv, Ukraine
Surface Morphology and Low-Temperature Luminescence of Thin (Y0.06Ga0.94)2O3:Cr3+ Films
437–448 (2025)
PACS numbers: 61.72.Mm, 68.37.Ps, 68.55.J-, 78.55.Hx, 78.60.Lc, 81.15.Cd, 81.40.Tv
Received 16 April, 2025
Thin films of (Y0.06Ga0.94)2O3:Cr are obtained by radio-frequency (RF) ion-plasma sputtering in an argon atmosphere on amorphous α-SiO2 substrates. The surface morphology of the obtained films is studied by means of AFM. The low-temperature (8.6 K) luminescence of the thin films of (Y0.06Ga0.94)2O3:Cr3+ under excitation by synchrotron radiation (22.14 eV and 7.75 eV) is studied. The obtained luminescence spectra are analysed according to excitation energy. A high-energy shift of the R1-line in the spectra of the activator luminescence of the Cr3+ ion in the thin films of (Y0.06Ga0.94)2O3:Cr3+ is found relative to the same for single crystal samples. This shift is analysed in the form of a nephelauxetic effect.
KEY WORDS: gallium oxide, yttrium oxide, chromium activator, thin films, nanocrystals, photoluminescence, synchrotron radiation
REFERENCES
- Z. Galazka, S. Ganschow, A. Fiedler, R. Bertram, D. Klimm, K. Irmscher, R. Schewski, M. Pietsch, M. Albrecht, and M. Bickermann, J. Cryst. Growth, 486: 82 (2018); https://doi.org/10.1016/j.jcrysgro.2018.01.022
- M. He, Q. Zeng, and L. Ye, Crystals, 13, No. 10: 1434 (2023); https://doi.org/10.3390/cryst13101434
- V. Vasyltsiv, A. Luchechko, Y. Zhydachevskyy, L. Kostyk, R. Lys, D. Slobodzyan, R. Jakieła, B. Pavlyk and A. Suchocki, J. Vacuum Science & Technol. A, 39, No. 3: 033201 (2021); https://doi.org/10.1116/6.0000859
- S. Kumar and R. Singh, phys. status solidi (RRL), 7, No. 10: 781 (2013); https://doi.org/10.1002/pssr.201307253
- E. Nogales, J. A. García, B. Méndez, and J. Piqueras, J. Appl. Phys., 101, No. 3: 033517 (2007); https://doi.org/10.1063/1.2434834
- S. M. Xu, W. Ge, X. Zhang, P. Zhang, and Y. Li, J. of Luminescence, 246, 118831 (2022); https://doi.org/10.1016/j.jlumin.2022.118831
- R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, Appl. Phys. Lett., 94, No. 22: 222102 (2009); https://doi.org/10.1063/1.3147197
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 86, No. 6: 1010 (2020); https://doi.org/10.1007/s10812-020-00932-4
- D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, and W. Tang, Materials Today Physics, 11: 100157 (2019); https://doi.org/10.1016/j.mtphys.2019.100157
- M. Alonso-Orts, E. Nogales, J. M. San Juan, M. L. Nó, J. Piqueras, and B. Mėndez, Phys. Rev. Appl., 9: 064004 (2018); http://dx.doi.org/10.1103/PhysRevApplied.9.064004
- M. Crozzolin, C. Belloni, J. Xu, T. Nakanishi, J. Ueda, S. Tanabe, F. Dallo, E. Balliana, A. Saorin, F. Rizzolio, D. Cristofori, P. Riello, A. Benedetti, and M. Back, J. Mater. Chem. C, 12, No. 29: 10929 (2024); https://doi.org/10.1039/D4TC01386G
- D. M. Esteves, A. L. Rodrigues, L. C. Alves, E. Alves, M. I. Dias, Z. Jia, W. Mu, K. Lorenz, and M. Peres, Scientific Reports, 13: 4882 (2023); https://doi.org/10.1038/s41598-023-31824-0
- T. Minami, T. Nakatani, and T. Miyata, J. Vac. Sci. Technol. A, 18, No. 4: 1234 (2000); https://doi.org/10.1116/1.582332
- A. K. Saikumar, Sh. D. Nehate, and K. B. Sundaram, ECS J. of Solid State Science and Technol., 8, No. 7: Q3064 (2019); https://doi.org/10.1149/2.0141907jss
- O. M. Bordun, B. O. Bordun, I. I. Medvid, and I. Yo. Kukharskyy, Acta Physica Polonica A, 133, No. 4: 910 (2018); https://doi.org/10.12693/APhysPolA.133.910
- K. H. Choi and H. C. Kang, Materials Letters, 123: 160 (2014); https://doi.org/10.1016/j.matlet.2014.03.038
- T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, Appl. Phys. Lett., 76, No. 12: 1549 (2000); https://doi.org/10.1063/1.126092
- C. B. Willingham, J. M. Wahl, P. K. Hogan, L. C. Kupferberg, T. Y. Wong, and A. M. De, Proc. SPIE, 5078: 179 (2003); https://doi.org/10.1117/12.500986
- O. M. Bordun, I. M. Bordun, and S. S. Novosad, J. Appl. Spectr., 62, No. 6: 1060 (1995); https://doi.org/10.1007/BF02606760
- E. F. Armendáriz-Alonso, O. Meza, E. G. Villabona-Leal, and Elías Pérez, J. Sol–Gel Sci. and Technol., 111: 216 (2024); https://doi.org/10.1007/s10971-024-06450-5
- K. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology: — Sputtering of Compound Materials (William Andrew Inc.: 2004)
- O. M. Bordun, B. O. Bordun, I. J. Kukharskyy, I. I. Medvid, O. Ya. Mylyo, M. V. Partyka, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 17, Iss. 1: 123 (2019); https://doi.org/10.15407/nnn.17.01.123
- https://photonscience.desy.de/facilities/petra_iii/beamlines/p66_superlumi/index_eng.html
- C. V. Thompson, Solid State Phys., 55: 269 (2001); https://doi.org/10.1016/S0081-1947(01)80006-0
- C. V. Thompson, J. Appl. Phys., 58: 763 (1985); https://doi.org/10.1063/1.336194
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. I. Polovynko, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 1: 159 (2021); https://doi.org/10.15407/nnn.19.01.159
- O. M. Bordun, I. I. Medvid, I. Yo. Kukharskyy, and B. O. Bordun, Phys. and Chem. of Solid State, 17, No. 1: 53 (2016); https://doi.org/10.15330/pcss.17.1.53-59
- E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett., 86, No. 11: 113112 (2005); https://doi.org/10.1063/1.1883713
- H. Tang, N. He, Z. Zhu, M. Gu, B. Liu, J. Xu, M. Xu, L. Chen, J. Liu, and X. Ouyang, Appl. Phys. Lett., 115, No. 11: 071904 (2019); https://doi.org/10.1063/1.5110535
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 84, No. 1: 46 (2017); https://doi.org/10.1007/s10812-017-0425-3
- O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013); https://doi.org/10.1007/s10812-013-9832-2
- J. B. Prasanna Kumar, G. Ramgopal, D. V. Sunitha, B. Daruka Prasad, H. Nagabhushana, Y. S. Vidya, K. S. Anantharaju, S. C. Prashantha, S. C. Sharma, and K. R. Prabhakara, Luminescence: J. Biol. Chem. Lum., 32, No. 3: 414 (2017); https://doi.org/10.1002/bio.3197
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, D. M. Maksymchuk, and I. I. Medvid, Phys. and Chem. of Solid State, 24, No. 3: 490 (2023); https://doi.org/10.15330/pcss.24.3.490-494
- R. Rao, A. M. Rao, B. Xu, J. Dong, S. Sharma, and M. K. Sunkara, J. Appl. Phys., 98, No. 9: 094312 (2005); https://doi.org/10.1063/1.2128044
- B. M. Weckhuysen, P. Van Der Voort, and G. Catana, Spectroscopy of Transition Metal Ions on Surfaces (Leuven University Press: 2000).
- A. Luchechko, V. Vasyltsiv, Ya. Zhydachevskyy, M. Kushlyk, S. Ubizskii, and A. Suchocki, J. Phys. D: Appl. Phys., 53, No. 35: 354001 (2020); https://doi.org/10.1088/1361-6463/ab8c7d
- Y. Tokida and S. Adachi, J. Appl. Phys., 112, No. 6: 063522 (2012); https://doi.org/10.1063/1.4754517
- C. Remple, L. M. Barmore, J. Jesenovec, J. S. McCloy, and M. D. McCluskey, J. Vac. Sci. Teshnol. A, 41: 022702 (2023); https://doi.org/10.1116/6.0002340
- H. Yusa and M. Miyakawa, J. Appl. Phys., 137, No. 3: 035902 (2025); https://doi.org/10.1063/5.0246260
- D. Vollath, F. D. Fischer, and D. Holec, Beilstein J. Nanotechnol., 9: 2265 (2018); https://doi.org/10.3762/bjnano.9.211
- P. J. Dereń, A. Watras, and D. Stefańska, Opt. Spectrosc., 131: 795 (2023); https://doi.org/10.1134/S0030400X23070032
- J. G. Zhang, B. Li, C. T. Xia, J. Xu, Q. Deng, X. D. Xu, F. Wu, W. S. Xu, H. S. Shi, G. Q. Pei, and Y. Q. Wu, Sci. China Ser. E-Tech. Sci., 50, No. 1: 51 (2007); https://doi.org/10.1007/s11431-007-2026-5
- C. K. Jørgensen, The Nephelauxetic Series P. 73–124 Progress in Inorganic Chemistry (Ed. F. A. Cotton) (New York–London: Interscience Publishers: 1962), vol. 4.
- M. G. Brik, S. J. Camardello, A. M. Srivatsava, N. M. Avram, and A. Suchotcki, ECS J. Solid State. Sci. Technol., 5: R3067 (2016); https://doi.org/10.1149/2.0091601jss