Download the full
version of the article (in PDF format)
O. M. BORDUN1, I. O. BORDUN1, I. I. MEDVID1, D. M. MAKSYMCHUK1, I. Yo. KUCHARSKYY1, I. M. KOFLIUK1, and D. S. LEONOV2
1Ivan Franko National University of Lviv, 50, Drahomanov Str., UA-79005 Lviv, Ukraine
2Technical Centre, N.A.S. of Ukraine, 13, Pokrovska Str., UA-04070 Kyiv, Ukraine
Surface Morphology and Low-Temperature Luminescence of Thin (Y0.06Ga0.94)2O3:Cr3+ Films
437–448 (2025)
PACS numbers: 61.72.Mm, 68.37.Ps, 68.55.J-, 78.55.Hx, 78.60.Lc, 81.15.Cd, 81.40.Tv
Thin films of (Y0.06Ga0.94)2O3:Cr are obtained by radio-frequency (RF) ion-plasma sputtering in an argon atmosphere on amorphous -SiO2 substrates. The surface morphology of the obtained films is studied by means of AFM. The low-temperature (8.6 K) luminescence of the thin films of (Y0.06Ga0.94)2O3:Cr3+ under excitation by synchrotron radiation (22.14 eV and 7.75 eV) is studied. The obtained luminescence spectra are analysed according to excitation energy. A high-energy shift of the R1-line in the spectra of the activator luminescence of the Cr3+ ion in the thin films of (Y0.06Ga0.94)2O3:Cr3+ is found relative to the same for single crystal samples. This shift is analysed in the form of a nephelauxetic effect.
KEY WORDS: gallium oxide, yttrium oxide, chromium activator, thin films, nanocrystals, photoluminescence, synchrotron radiation
DOI: https://doi.org/10.15407/nnn.23.02.0437
REFERENCES
- Z. Galazka, S. Ganschow, A. Fiedler, R. Bertram, D. Klimm, K. Irmscher, R. Schewski, M. Pietsch, M. Albrecht, and M. Bickermann, J. Cryst. Growth, 486: 82 (2018); https://doi.org/10.1016/j.jcrysgro.2018.01.022
- M. He, Q. Zeng, and L. Ye, Crystals, 13, No. 10: 1434 (2023); https://doi.org/10.3390/cryst13101434
- V. Vasyltsiv, A. Luchechko, Y. Zhydachevskyy, L. Kostyk, R. Lys, D. Slobodzyan, R. Jakieła, B. Pavlyk and A. Suchocki, J. Vacuum Science & Technol. A, 39, No. 3: 033201 (2021); https://doi.org/10.1116/6.0000859
- S. Kumar and R. Singh, phys. status solidi (RRL), 7, No. 10: 781 (2013); https://doi.org/10.1002/pssr.201307253
- E. Nogales, J. A. García, B. Méndez, and J. Piqueras, J. Appl. Phys., 101, No. 3: 033517 (2007); https://doi.org/10.1063/1.2434834
- S. M. Xu, W. Ge, X. Zhang, P. Zhang, and Y. Li, J. of Luminescence, 246, 118831 (2022); https://doi.org/10.1016/j.jlumin.2022.118831
- R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, Appl. Phys. Lett., 94, No. 22: 222102 (2009); https://doi.org/10.1063/1.3147197
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 86, No. 6: 1010 (2020); https://doi.org/10.1007/s10812-020-00932-4
- D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, and W. Tang, Materials Today Physics, 11: 100157 (2019); https://doi.org/10.1016/j.mtphys.2019.100157
- M. Alonso-Orts, E. Nogales, J. M. San Juan, M. L. Nó, J. Piqueras, and B. Mėndez, Phys. Rev. Appl., 9: 064004 (2018); http://dx.doi.org/10.1103/PhysRevApplied.9.064004
- M. Crozzolin, C. Belloni, J. Xu, T. Nakanishi, J. Ueda, S. Tanabe, F. Dallo, E. Balliana, A. Saorin, F. Rizzolio, D. Cristofori, P. Riello, A. Benedetti, and M. Back, J. Mater. Chem. C, 12, No. 29: 10929 (2024); https://doi.org/10.1039/D4TC01386G
- D. M. Esteves, A. L. Rodrigues, L. C. Alves, E. Alves, M. I. Dias, Z. Jia, W. Mu, K. Lorenz, and M. Peres, Scientific Reports, 13: 4882 (2023); https://doi.org/10.1038/s41598-023-31824-0
- T. Minami, T. Nakatani, and T. Miyata, J. Vac. Sci. Technol. A, 18, No. 4: 1234 (2000); https://doi.org/10.1116/1.582332
- A. K. Saikumar, Sh. D. Nehate, and K. B. Sundaram, ECS J. of Solid State Science and Technol., 8, No. 7: Q3064 (2019); https://doi.org/10.1149/2.0141907jss
- O. M. Bordun, B. O. Bordun, I. I. Medvid, and I. Yo. Kukharskyy, Acta Physica Polonica A, 133, No. 4: 910 (2018); https://doi.org/10.12693/APhysPolA.133.910
- K. H. Choi and H. C. Kang, Materials Letters, 123: 160 (2014); https://doi.org/10.1016/j.matlet.2014.03.038
- T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, Appl. Phys. Lett., 76, No. 12: 1549 (2000); https://doi.org/10.1063/1.126092
- C. B. Willingham, J. M. Wahl, P. K. Hogan, L. C. Kupferberg, T. Y. Wong, and A. M. De, Proc. SPIE, 5078: 179 (2003); https://doi.org/10.1117/12.500986
- O. M. Bordun, I. M. Bordun, and S. S. Novosad, J. Appl. Spectr., 62, No. 6: 1060 (1995); https://doi.org/10.1007/BF02606760
- E. F. Armendáriz-Alonso, O. Meza, E. G. Villabona-Leal, and Elías Pérez, J. Sol–Gel Sci. and Technol., 111: 216 (2024); https://doi.org/10.1007/s10971-024-06450-5
- K. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology: — Sputtering of Compound Materials (William Andrew Inc.: 2004)
- O. M. Bordun, B. O. Bordun, I. J. Kukharskyy, I. I. Medvid, O. Ya. Mylyo, M. V. Partyka, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 17, Iss. 1: 123 (2019); https://doi.org/10.15407/nnn.17.01.123
- https://photonscience.desy.de/facilities/petra_iii/beamlines/p66_superlumi/index_eng.html
- C. V. Thompson, Solid State Phys., 55: 269 (2001); https://doi.org/10.1016/S0081-1947(01)80006-0
- C. V. Thompson, J. Appl. Phys., 58: 763 (1985); https://doi.org/10.1063/1.336194
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. I. Polovynko, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 1: 159 (2021); https://doi.org/10.15407/nnn.19.01.159
- O. M. Bordun, I. I. Medvid, I. Yo. Kukharskyy, and B. O. Bordun, Phys. and Chem. of Solid State, 17, No. 1: 53 (2016); https://doi.org/10.15330/pcss.17.1.53-59
- E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett., 86, No. 11: 113112 (2005); https://doi.org/10.1063/1.1883713
- H. Tang, N. He, Z. Zhu, M. Gu, B. Liu, J. Xu, M. Xu, L. Chen, J. Liu, and X. Ouyang, Appl. Phys. Lett., 115, No. 11: 071904 (2019); https://doi.org/10.1063/1.5110535
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 84, No. 1: 46 (2017); https://doi.org/10.1007/s10812-017-0425-3
- O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013); https://doi.org/10.1007/s10812-013-9832-2
- J. B. Prasanna Kumar, G. Ramgopal, D. V. Sunitha, B. Daruka Prasad, H. Nagabhushana, Y. S. Vidya, K. S. Anantharaju, S. C. Prashantha, S. C. Sharma, and K. R. Prabhakara, Luminescence: J. Biol. Chem. Lum., 32, No. 3: 414 (2017); https://doi.org/10.1002/bio.3197
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, D. M. Maksymchuk, and I. I. Medvid, Phys. and Chem. of Solid State, 24, No. 3: 490 (2023); https://doi.org/10.15330/pcss.24.3.490-494
- R. Rao, A. M. Rao, B. Xu, J. Dong, S. Sharma, and M. K. Sunkara, J. Appl. Phys., 98, No. 9: 094312 (2005); https://doi.org/10.1063/1.2128044
- B. M. Weckhuysen, P. Van Der Voort, and G. Catana, Spectroscopy of Transition Metal Ions on Surfaces (Leuven University Press: 2000).
- A. Luchechko, V. Vasyltsiv, Ya. Zhydachevskyy, M. Kushlyk, S. Ubizskii, and A. Suchocki, J. Phys. D: Appl. Phys., 53, No. 35: 354001 (2020); https://doi.org/10.1088/1361-6463/ab8c7d
- Y. Tokida and S. Adachi, J. Appl. Phys., 112, No. 6: 063522 (2012); https://doi.org/10.1063/1.4754517
- C. Remple, L. M. Barmore, J. Jesenovec, J. S. McCloy, and M. D. McCluskey, J. Vac. Sci. Teshnol. A, 41: 022702 (2023); https://doi.org/10.1116/6.0002340
- H. Yusa and M. Miyakawa, J. Appl. Phys., 137, No. 3: 035902 (2025); https://doi.org/10.1063/5.0246260
- D. Vollath, F. D. Fischer, and D. Holec, Beilstein J. Nanotechnol., 9: 2265 (2018); https://doi.org/10.3762/bjnano.9.211
- P. J. Dereń, A. Watras, and D. Stefańska, Opt. Spectrosc., 131: 795 (2023); https://doi.org/10.1134/S0030400X23070032
- J. G. Zhang, B. Li, C. T. Xia, J. Xu, Q. Deng, X. D. Xu, F. Wu, W. S. Xu, H. S. Shi, G. Q. Pei, and Y. Q. Wu, Sci. China Ser. E-Tech. Sci., 50, No. 1: 51 (2007); https://doi.org/10.1007/s11431-007-2026-5
- C. K. Jørgensen, The Nephelauxetic Series P. 73–124 Progress in Inorganic Chemistry (Ed. F. A. Cotton) (New York–London: Interscience Publishers: 1962), vol. 4.
- M. G. Brik, S. J. Camardello, A. M. Srivatsava, N. M. Avram, and A. Suchotcki, ECS J. Solid State. Sci. Technol., 5: R3067 (2016); https://doi.org/10.1149/2.0091601jss
|