Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 2

 



Download the full version of the article (in PDF format)

M.E. MEZABIA1, A. SOUIGAT2, B. TELLAB3, and M.T. MEFTAH4

1Department of Mathematics, Kasdi Merbah University, 30000 Ouargla, Algeria
2Ecole Normale Supérieure, 30000 Ouargla, Algeria
3Department of Process Engineering, Kasdi Merbah University, 30000 Ouargla, Algeria
4LRPPS Laboratory, Kasdi Merbah University, 30000 Ouargla, Algeria


Application of Jumarie's Fractional Derivative to Degassing a Thin Plate

307–316 (2025)

PACS numbers: 02.30.Gp, 02.30.Hq, 02.30.Uu, 05.60.Cd, 66.30.Dn, 81.05.Zx

In this work, we have dealt with a problem encountered in transport phenomena. The equations describing such phenomenon contain fractional derivatives. We use the modified Jumarie’s definition of such a derivative to solve the transport equation. In particular, we have treated the space–time fractional diffusion equation (of Fick’s law) regarding the process of degassing a thin plate in vacuum

KEY WORDS: fractional Jumarie’s derivative, Fick’s law, Mittag-Leffler functions, Laplace transform

DOI:  https://doi.org/10.15407/nnn.23.02.0307

REFERENCES
  1. N. Laskin, Phys. Lett. A, 268, Iss. 4–6: 298 (2000); https://doi.org/10.1016/S0375-9601(00)00201-2
  2. X. Guo and M. Xu, J. Math. Phys., 47, Iss. 8: 082104 (2006); https://doi.org/10.1063/1.2235026
  3. J. Dong and M. Xu, J. Math. Phys., 48, Iss. 7: 072105 (2007); https://doi.org/10.1063/1.2749172.135
  4. R. Herrmann, The Fractional Schroedinger Equation and the Infinite Potential Well-Numerical Results Using the Riesz Derivative, arXiv e-prints (2012) arXiv:1210.4410[math-Ph]; https://arxiv.org/abs/1210.4410
  5. Z. K. F. E. Bouzenna and M. Meftah, Rep. Math. Phys., 85, Iss. 1: 57 (2020); https://doi.org/10.1016/S0034-4877(20)30010-0
  6. J. Swift and P. C. Hohenberg, Phys. Rev. A, 15, Iss. 1: 319 (1977); https://doi.org/10.1103/PhysRevA.15.319
  7. Ahmed Hashim, Aseel Hadi, and Noor Al-Huda Al-Aaraji, Nanosistemi, Nanomateriali, Nanotehnologii, 21, Iss. 3: 553 (2023); https://doi.org/10.15407/nnn.21.03.553
  8. Ugo Otuonye, Hee Woo Kim, and Wei D. Lu, Appl. Phys. Lett., 110: 173104 (2017); https://doi.org/10.1063/1.4982648
  9. Yana Hlek, Olga Khliyeva, Dmytro Ivchenko, Nikolay Lapardin, Viacheslav Khalak, and Vitaly Zhelezny, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 3: 0745 (2022); https://doi.org/10.15407/nnn.20.03.745
  10. B. Kramer, T. Brandes, W. Hausler, K. Jauregul, W. Pfaff, and D. Weinmann, Semicond. Sci. Technol., 9, Iss. 115: 1871 (1994); https://doi.org/10.1088/0268-1242/9/11S/004
  11. J. M. J. Lega and A. C. Newell, Phys. Rev. Lett., 73, Iss. 22: 2978 (1994); https://doi.org/10.1103/PhysRevLett.73.2978
  12. D. H. J. M. I. Aranson, Phys. Rev. A, 55, Iss. 4: 3173 (1997); https://doi.org/10.1103/PhysRevA.55.3173
  13. H. Sakaguchi and H. R. Brand, Physica D, 117, Iss. 1–4: 95 (1998); https://doi.org/10.1016/S0167-2789(97)00310-2.9
  14. M. Bartuccelli, Mathematical Methods in the Applied Sciences, 25, Iss. 8: 701 (2002); https://doi.org/10.1002/mma.309
  15. X-Jun Yang, Local Fractional Functional Analysis & Its Applications. Nonlinear Sciences Series (Asian Academic Publisher Limited: 2011).
  16. X. J. Yang, Advanced Local Fractional Calculus and Its Applications (New York: World Science Publisher: 2012).
  17. K. S. M. B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley: 1993).
  18. S. Das, Functional Fractional Calculus (Springer: 2011), vol. 1.
  19. I. Podlubny, Fractional Differential Equations. Mathematics in Science and Engineering (Elsevier: 1999), vol. 198.
  20. V. V. Anh and N. N. Leonenko, Stochastic Processes and Their Applications, 84, Iss. 1: 91 (1999); https://doi.org/10.1016/S0304-4149(99)00053-8
  21. V. V. Anh and N. N. Leonenko, Statistics & Probability Letters, 48, Iss. 3: 239 (2000); https://doi.org/10.1016/S0167-7152(00)00003-1
  22. Y. Povstenko and J. Klekot, Journal of Applied Mathematics and Computational Mechanics, 13, Iss. 1: 95 (2014); https://doi.org/10.17512/jamcm.2014.1.10
  23. U. Siedlecka and S. Kukla, Journal of Applied Mathematics and Computational Mechanics, 14, Iss. 3: 95 (2015); https://doi.org/10.17512/jamcm.2015.3.10
  24. S. Kukla and U. Siedlecka, Journal of Applied Mathematics and Computational Mechanics, 14, Iss. 4: 105 (2015); https://doi.org/10.17512/jamcm.2015.4.10
  25. M. Basu and D. P. Acharya, Journal of Applied Mathematics and Computing, 10, Iss. 1: 131 (2002); https://doi.org/10.1007/BF02936212
  26. M. Caputo, Geophysical Journal International, 13, Iss. 5: 529 (1967); https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
  27. M. Caputo, Rendiconti Lincei, 7, Iss. 4: 243 (1996); https://doi.org/10.1007/BF03002242
  28. R. Goreno and F. Mainardi, Problems and Methods in Mathematical Physics. Conference Proceeding (Springer: 2001), p. 120–145.
  29. G. Jumarie, Computers & Mathematics with Applications, 51, Iss. 9–10: 1367 (2006); https://doi.org/10.1016/j.camwa.2006.02.001
  30. S. S. U. Ghosh, S. Sengupta, and S. Das, American Journal of Mathematical Analysis, 3, Iss. 2: 32 (2015); https://doi.org/10.12691/ajma-3-2-2
  31. U. Ghosh, S. Sarkar, and S. Das, American Journal of Mathematical Analysis, 3, Iss. 3: 72 (2015); https://doi.org/10.12691/ajma-3-3-3
  32. C. J. Carneiro Filho, M. B. Mansur, P. J. Mondenesi, and B. M. Gonzalez, Materials Science and Engineering A, 527, Iss. 18–19: 4947 (2010); https://doi.org/10.1016/j.msea.2010.04.042
  33. E. I. Galindo-Nava, B. I. Y. Basha, and P. E. J. Rivera-Díaz-del-Castillo, Journal of Materials Science & Technology, 33, Iss. 12: 1433 (2017); https://doi.org/10.1016/j.jmst.2017.09.011
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement