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In this work, we have dealt with a problem encountered in transport phe-
nomena. The equations describing such phenomenon contain fractional
derivatives. We use the modified Jumarie’s definition of such a derivative
to solve the transport equation. In particular, we have treated the space—
time fractional diffusion equation (of Fick’s law) regarding the process of
degassing a thin plate in vacuum.

Y 1miit poboTi Mm posrigmaeMo mpobJemy, IO BUHUKAE B SABUINAX IMepeHe-
ceHHsA. PiBHAHHSA, 1[0 OIMNCYIOTh TaKe ABUIIE, MiCTATh Apo00Bi moxiami. Mu
BUKOpPHUCTOBYyeMO MoaudikoBaHe BusHaueHHA 3a J[:xymapi Takoi moximHoi
ISl PO3B’A3aHHSA DPiBHAHHA HMepeHeceHHA. 30KpPeMa, MU PO3TIIAJAEMO IIPOC-
TOPOBO-uacoBe ApoboBe nudysiiine piBHAHHA (3a PiKOBMM 3aKOHOM) CTOCO-
BHO IIPOIleCy Aerasarlii TOHKOI IIJIaCTUHU y BaKyyMi.
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1. INTRODUCTION

In recent decades, considerable attention has been paid to the frac-
tional derivative by the application of this concept in different are-
as of physics as quantum physics [1-6], quantum electronics, nanoe-
lectronics, transport in nanostructures [7—10], and in general engi-
neering as: continuum mechanics, viscoelastic and viscoplastic flow,
electrical circuits, control theory, image processing, viscoelasticity,
biology and hydrodynamics [11-15]. Historically, the fractional cal-
culus has been developed by Riemann and Liouville. Not only does
the latter defines a derivative and antiderivative (integral) for an
integer order (as usual derivative of order one, two, etc.), but to
give meaning to the derivative with non-integer order. The frac-
tional calculus was developed recently in Refs. [16—20] and applied
successfully for modelling some physical processes [21-29]. One im-
portant of such process is the diffusion phenomenon. The associated
fractional diffusion equation arises quite naturally in continuous-
time random walks. The fractional derivatives may be introduced by
different definitions. For example, Jumarie [30] has considered the
Riemann—Liouville definition and modified it agreeing with the
fractional difference definition and fully consistent with the frac-
tional-difference definition and avoiding any reference to the deriv-
ative of order greater than the considered ones.

The purpose of this paper is to study the problems of transport
equation as diffusion equation (Fick’s equation) in ordinary space.
Section 2 starts with defining fractional Jumarie’s derivative [30].
We show that this definition is agreed with the standard derivative;
as it happens, the fractional derivative of a constant is well zero.
Furthermore, when we perform the limit ao=1, the standard case is
recovered. In Section 3, we treated the Fick’s equation, when the
derivatives (in time and space) are fractional (0<a <1 and
0 <B £ 2). The solution of this equation is presented explicitly for a
particular case. We end this work with a conclusion in Sec. 4.

2. JUMARIE’S DERIVATIVE

The analytical solutions of the fractional differential equation are
emerging branch of applied science also in basic science such as ap-
plied mathematics, physics, mathematical biology, and engineering.
There are many types of fractional integral and differential opera-
tors with the Riemann—Liouville (R—L) definition. Other useful def-
inition includes the Caputo definition of fractional derivative
(1967). Riemann—Liouville definition of the fractional derivative of
a constant is non-zero that creates a difficulty to relate between the
basic calculi. To overcome this difficulty, Jumarie modified the def-
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inition of fractional derivative of Riemann—Liouville type as follows
[30]:

L [t-5 " fE)de a<0

r(_a) 0 b b

cry=d— L [Nyl -
D) = m_q)[ dtjfo(t O [f®-F0)]ds, 0<a<l, (1)

(@], 0<a<l, n>1.

With this new formulation, we obtain the derivative of a constant
as zero. For a.=1, we can check that the second definition recovers
the standard first derivative of f(¢); to be convinced, it easy to see
this statement by performing the Laplace transform to both side of
the second definition. We must stop here to make an important re-
mark about the second definition of Jumarie (0 <o <1):

R B 0 2 1SR S
“th(t)_r(l—a)(dtjjo(t &) [f(&) - f(0)]dt thg(t), (2)

we can write it as follows:

L:(t -8 [f(©) - f(0)]d§ = AL - 0)g(t) - 3)

Recently in Ref. [26], it has developed analytical method for so-
lution of linear fractional differential equations with Jumarie’s
type derivative in terms of Mittag-Leffler functions and found that
the solution of the fractional differential equation ‘Dfy =ay is
y = E (ax"). This new finding has been extended in Ref. [31] to get
analytical solution of system of linear fractional differential equa-
tions. The main aim of this work is to investigate the possibility of
applying these new analytical-solution methods for treatment the
space—time fractional diffusion equation with Jumarie’s type deriv-
ative for degassing a thin plate in vacuum.

3. APPLICATIONS

In this section, we will deal with the Fick’s equation describing the
diffusion of impurities in a material during the process degassing a
thin plate under vacuum, which allows industry of a high-strength
component to reduce the impurity (like hydrogen) content within
the material by being removed in gas form [32, 33]. The impurity
transport in the material during degassing can be modelled by the
space—time fractional diffusion equation, which is referred to as
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Dtac(x’ ) = LLDEC(.X', 1), (4)

where p is the diffusion coefficient of impurity through the materi-
al; 0<a<1and O0<B<2.

Consider the case of degassing a thin plate of thickness L in vac-
uum, whose surfaces, x =0, x = L, are maintained at zero concentra-
tion of impurity. The initial concentration of impurity is a given
function cy(x) defined at all points x on the plate. Therefore, the
initial and boundary conditions can be written as the following
equations:

c(x,0) = cy(x), 0 < x < L; ¢(0,%) = c(L,t) = 0. (5)

As p is time-independent, we use the separation of variables
technique:

c(x,t) = ¢,()cy(x) (6)
to get the following two equations to solve:
IDle,(t) = —Kuc,(t), (7
which is a time-dependent equation, and
"DPe,(x) = —E’c,(x), (8)

which is a space-dependent equation, and %k is a positive real con-
stant.

3.1. Time-Dependent Equation

Taking into account the Jumarie’s definition (1), we can transform
Eq. (7) to the following integral equation:

1

o o AT
—k ucl(t)—r(l_a)( dtjjo(t 9la@-¢Olds. ()

By taking Laplace transform in both side, assumed that
C,(p) = L(c,()), it is easy to find

C(p) = 9P (10)
kRu+p

Then, by taking the inverse of Laplace transform, we find the
solution of the time-dependent Eq. (7) as follows:
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Fig. Time-dependent part of the concentration for different values of a.

a-1
¢,(t) = § C,(p) exp(pt)dp = cl(O)cﬁyhexp(pt)dp = E,(—uk’t"),

(11)
which is shown in Fig. for different values of a.
For example, in case a=1/2, we get:
e,(t) = E, ,(—nk*t) = exp(u’k*t)erfe(ukt) . (12)

It is clear that, when we put a=1 in Eq. (11), we retrieve the
standard case.

3.2. Space-Dependent Equation

To solve Eq. (8), we put =2y, where 0 <y <1; therefore, Eq. (8)
can be written as

e D, (x) = —kPe,(x) (13)
From Ref. [26], the solution of the last equation is

¢,(x) = Acos,(kx") + Bsin,(kx") , (14)

where
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cos,(Bx') = 3 (1) (kx')" [T(2na +1) , (15)
sin, (kx') = i(—l)” (kx' )2 /T(2no. + o + 1) (16)

are the fractional cosine and sine. Therefore, the solution for the
space—time concentration, governed by Eq. (4), can be written as

o(x,t) = E,(~k*ut")| Acos,(kx'") + Bsin,(kx") |, (17)

where A and B are constants to be determined by using the bounda-
ry conditions (5). Using the boundary conditions, we observe that

A =0, kL = (M), (18)

where M is the period [26]. Then, we get
(x,t) = BE, {—(‘”JL‘?Y ] HtaJsiny [(nM)V ’2—] (19)
The general solution is a linear combination
c(x,t)= SBE, {—u ((”Liy)yjz ta]ﬁny [(nM)" z_;j . (©0)
n=0

Using the initial conditions (5), we have

¢(x,0) = ¢,(x) = 3 B,sin, [(nM)* E—J . (21)

n=0

To determine the coefficients B,, we multiply the both sides of
Y

the last equation by siny((mM)“’ %], where m is an integer, and

integrate both sides of the resulting equation from a zero to L, and
we get the following result:

[ eo(x)sim, ((mM)Y ’;-J dx = 3B, [ sin, [(mM)V

= Bm,

x! x!
7 J sin, ((TLM)Y Ej dx =

(22)

or equivalently
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B, = [ e,)sin, ((nM)Y i—j dy (23)

that gives the global solution of the diffusion Eq. (4) as
c(x,t) =

- 3E, {—u(‘"ﬁf )y] taJ sin, [(nM)Y E—J [le@sin, [(nM)Y i—j dy.

n=0
(24)
As initial function, we take the initial spatial concentration as
W) =cy(L-y). (25)
Then, the coefficient B, (23) becomes as follows:
L yy
B, = ¢ ] (L~ y)sin,| (1M)' < |dy . (26)

By replacing the fractional sine and making the change y = Lk,
we find

. . ) (nM)yhy 2k+1
B, =c,L jolh(l - h);(—n l("(.’Zkoc—-i-(x)-i-l)dh 27
or equivalently
_ ooy v (RR+Dy+1 )2k
B, = c,L ;( 1) (@ 17+ 4) ((nMy') ™. (28)

The last expression can be seen to be replaced by

— 3 Y N (_7\’n )k - 3 (—7\/,1 )k
B, = ¢, L’ (nM) LZ(; T(2k+ 1)y +3) 2,; T((2k + Dy + 4)} =

or equivalently
B, = ¢,L’(nM)' [ E,, , 5(-1,) - 2E, ,,(-},) ], (30)

such that E  (x) is the Mittag-Leffler function of the second kind,
and

A, = (nM)*, (31)

leading to the following final closed result (y =/2):
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2
o &}\‘ ¥
c(x, t) = ZE(X —u( Lyn J t(x aniny (1/7\’11 %J Py (32)
n=0

2
@ f}\, f '
COL3 ZEtX —u [ Lyn * N A, E2v,v+3 (_}\‘n ) sin, ( M %] -

n=0

2
0 ?7\4 v
=-2¢, I’ E, —p{ Ly"] t* «/XHEZMM (=X, ) sin, [«/Xn %] . (33)
n=0

4. CONCLUSION

In this work, we have treated some problems, which encountered in
transport phenomena. The equations describing these phenomena
have fractional derivatives. At first, we have presented the modi-
fied Jumarie’s definition of such derivatives. After what, we have,
as application, solved the fractional diffusion equation (Fick’s law)
that presents a partial fractional differential on the time ¢ and a
partial fractional differential on the spatial co-ordinate x. The order
of the fractionality in the time is o (0 < a <1) and in the space is
B (0<pB<2). The solution of the time fractional equation is ex-
pressed in term of Mittag-Leffler function of the first kind, where-
as the solution of the spatial fractional equation is expressed in
term of Mittag-Leffler function of the second kind (see Eq. (33)).
This treatment can be useful to describe the transport phenomena
in nanomaterials and nanostructures.
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