Go to main page

Issues

 / 

2025

 / 

Vol. 23 / 

Issue 1

 



Download the full version of the article (in PDF format)

Mohammad Taher AL-OMAR and Mohammad Moudar AL-KHUDER

Preparation of Metal-Complexes' Nanoparticles Derivative from Novel Schiff Bases of Furan and Pyridine

191–202 (2025)

PACS numbers: 78.67.Bf, 81.07.Nb, 81.16.Fg, 87.19.xb, 87.64.Ee, 87.64.K-, 87.85.Rs

Heterocyclic compounds have great importance in the medical and industrial fields. Furan and pyridine are most widespread and effective of these compounds. In this study, we prepare two novel Schiff bases 1,1(1,4-phenylene)bis(N-(4-((pyridin-2-ylmethylene)amino)phenyl)methaneimine (L1), 1,1-(1,4-phenylene)bis(N-(4-((furan-2-ylmethylene)amino)phenyl)methanimine) (L2), and their metal complexes with (Cd2+, Mn2+, Sn2+). The prepared compounds are characterized using 1H-NMR, 13C-NMR, UV–Vis, FT-IR, and SEM techniques. As a result, all the metal complexes are bimetallic and non-electrolytic. In addition, the biological activity against Escherichia coli and Staphylococcus aureus bacteria is studied for the prepared compounds

KEY WORDS: pyridine aldehyde, furfural, 1,4-diaminobenzene, terephthal aldehyde, metal complexes

DOI:  https://doi.org/10.15407/nnn.23.01.0191

REFERENCES
  1. S. Manivel, S. B. Gangadharappa, N. Elangovan, R. Thomas, O. A. Abu Ali, and D. I. Saleh, J. Mol. Liq., 350: 118531(2022); https://doi.org/10.1016/j.molliq.2022.118531
  2. A. Z. El‐Sonbati, W. H. Mahmoud, G. G. Mohamed, M. A. Diab, S. M. Morgan, and S. Y. Abbas, Appl. Organomet. Chem., 33, Iss. 9: e5048 (2019); https://doi.org/10.1002/aoc.5048
  3. Y. Badeea, W. Mahdi, Y. Ibrahim, and F. Musa, Int. J. Drug. Deliv. Technol., 11, Iss. 3: 1 (2021).
  4. S. De, A. Jain, and P. Barman, Chemistry Select, 7, Iss. 7: e202104334 (2022); https://doi.org/10.1002/slct.202104334
  5. M. Sameer Al-Rawi, and F. Abed Nashaan, Chem. Methodol., 7: 106 (2023). https://doi.org/10.22034/CHEMM.2023.362512.1610
  6. H. M. A. Al-Redha, S. H. Ali, and S. S. Mohammed, Baghdad Sci. J., 19, Iss. 3: 704 (2022); http://dx.doi.org/10.21123/bsj.2022.19.3.0704
  7. S. K. Sahib and L. K. Abdul Karem, Baghdad Sci. J., 17, Iss. 1: 99 (2020); http://dx.doi.org/10.21123/bsj.2020.17.1.0099
  8. S. Mathan Kumar, J. Rajesh, K. Anitha, K. Dhahagani, M. Marappan, N. Indra Gandhi, and G. Rajagopal, Spectrochimica Acta. Part A: Mol. Biomol. Spectrosc., 142: 292 (2015); https://doi.org/10.1016/j.saa.2015.01.080
  9. P. Elena, F. Julea, Y. Chumakov, P. Petrenco, T. Roşu, and A. Gulea, J. Organomet. Chem., 836–837: 44 (2017); https://doi.org/10.1016/j.jorganchem.2017.01.018
  10. C. R. Sahoo, S. K. Paidesetty, B. Dehury, and R. N. Padhy, J. Biomol. Struct. Dyn., 55: 1 (2023); https://doi.org/10.1080/07391102.2023.2217918
  11. A. Kumar and A. Kumar, Sci. Temper., 14, Iss. 1: 20 (2023); https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.04
  12. X. Tang, Z. Zhang, L. Jing, K. Luan, S. Zhou, and T. Zhang, Cellulose, 30: 10519 (2023); https://doi.org/10.1007/s10570-023-05510-3
  13. D. T. Nguyen, T. N. Nguyen, and T. V. Pham, Vietnam J. Catal. Adsorpt., 12, Iss. 1: 49 (2023); https://doi.org/10.51316/jca.2023.008
  14. Ö. Altun and M. Ö. Koçer, J. Mol. Struct., 1224: 129242 (2021); https://doi.org/10.1016/j.molstruc.2020.129242
  15. N. S. Hassan and W. K. Mahdi, Chem. Methodol., 7: 419 (2023); https://doi.org/10.22034/CHEMM.2023.385342.165
  16. M. Ilakiyalakshmi, S. R. Mohana, and N. A. Arumugam, Inorg. Chem. Commun., 157: 111412 (2023); https://doi.org/10.1016/j.inoche.2023.111412
  17. S. Ishii and M. J. Sadowsky, Microbes Environ., 23, Iss. 2: 101 (2008); https://doi.org/10.1264/jsme2.23.101
  18. Ø. Olsvik, Y. Wasteson, A. Lund, and E. Hornes, Int. J. Food Microbiol., 12, Iss. 1: 103 (1991); https://doi.org/10.1016/0168-1605(91)90051-P
  19. M. Rostami-Yazdi, B. Clement, and U. Mrowietz, Arch. Dermatol. Res., 302: 531 (2010); https://doi.org/10.1007/s00403-010-1061-4
  20. S. G. Dastidar, K. Ganguly, K. Chaudhuri, and A. Chakrabarty, Int. J. Antimicrob. Agents, 14, Iss. 3: 249 (2000); https://doi.org/10.1016/S0924-8579(99)00159-4
  21. A. Laudy, E. Kulińska, and S. Tyski, Molecules, 22, Iss. 1: 114 (2017); https://doi.org/10.3390/molecules22010114
  22. G. L. Rosano, E. S. Morales, and E. A. Ceccarelli, Protein Sci., 28, Iss. 8: 1412 (2019); https://doi.org/10.1002/pro.3668
  23. H. W. Boucher and G. R. Corey, Clin. Infect. Dis., 46, Iss. 5: S344 (2008); https://doi.org/10.1086/533590
  24. F. D. Lowy, N. Engl. J. Med., 339: 520 (1998); https://doi.org/10.1056/NEJM199808203390806
  25. J.-P. Rasigade and F. Vandenesch, Infect. Genet. Evol., 21: 510 (2014); https://doi.org/10.1016/j.meegid.2013.08.018
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Editorial board phones and address About the collection User agreement