NNN 2025, Vol. 23, No. 1, pp. 101–108 Abstract
Go to journal home page

Issues

 / 

2025

 / 

Vol. 23 / 

No. 1

 



Download full version of the article (in PDF format)

O.M. BORDUN, I.I. MEDVID, I.Yo. KUKHARSKYY, V.G. BIHDAY, I.O. BORDUN, I.M. KOFLIUK, Zh.Ya. TSAPOVSKA, and D.S. LEONOV

Light Dispersion in Thin Films of ZnGa2O4:Cr3+ and ZnGa2O4:Mn2+ Obtained by RF Ion-Plasma Sputtering

101–108 (2025)

PACS numbers: 61.72.Ff, 61.72.Mm, 68.37.Ps, 68.55.J-, 78.20.Ci, 78.66.Li, 81.15.Cd

Thin films of ZnGa2O4:Cr3+ and ZnGa2O4:Mn2+ are obtained by high-frequency (RF) ion-plasma sputtering in an argon atmosphere. The surface morphology is studied by AFM, and the sizes of nanocrystallites forming the films are analysed. Based on the interference technique, the refractive index is determined. As found, in films of both types in the visible region, a normal dispersion of the refractive index is observed. The analysis of the single-oscillator three-parameter model used to describe the dispersion dependence is carried out, and the static refractive index n0, the characteristic energy E0, the approximation parameter A, and the plasma-oscillations' energy for valence electrons ℏωp are determined.

KEY WORDS: zinc gallate, thin films, RF sputtering, surface morphology, refractive index dispersion

DOI:  https://doi.org/10.15407/nnn.23.01.0101

REFERENCES
  1. Mu-I Chen, Anoop Kumar Singh, Jung-Lung Chiang, Ray-Hua Horng, and Dong-Sing Wu, Nanomaterials, 10, Iss. 11: 2208 (2020); https://doi.org/10.3390/nano10112208
  2. G. Anoop, K. Mini Krishna, and M. K Jayaraj, J. Electrochem. Soc., 158, No. 8: J269 (2011); https://doi.org/10.1149/1.3604755
  3. Chengling Lu, Qingyi Zhang, Shan Li, Zuyong Yan, Zeng Liu, Peigang Li, and Weihua Tang, J. Phys. D: Appl. Phys., 54, No. 40: 405107 (2021); https://doi.org/10.1088/1361-6463/ac1465
  4. Chia-Hsun Chen, Shu-Bai Liu, and Sheng-Po Changu, ACS Omega, 9, Iss. 13: 15304 (2024); https://doi.org/10.1021/acsomega.3c09965
  5. Yong Eui Lee, David P. Norton, John D. Budai, Philip D. Rack, Jeff Peterson, and Michael D. Potter, J. Appl. Phys., 91, No. 5: 2974 (2002); https://doi.org/10.1063/1.1448863
  6. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013); https://doi.org/10.1007/s10812-013-9832-2
  7. Ray-Hua Horng, Shu-Hsien Lin, Yi-Che Chen, Dun-Ru Hung, Po-Hsiang Chao, Pin-Kuei Fu, Cheng-Hsu Chen, Yi-Che Chen, Jhih-Hong Shao, Chiung-Yi Huang, Fu-Gow Tarntair, Po-Liang Liu, and Ching-Lien Hsiao, Nanomaterials, 12, Iss 21: 3759 (2022); https://doi.org/10.3390/nano12213759
  8. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 81, No. 1: 43 (2014); https://doi.org/10.1007/s10812-014-9884-y
  9. V. Castaing, M. Romero, D. Rytz, G. Lozano, and H. Míguez, Adv. Optical Mater., 12, No. 36: 2401638 (2024); https://doi.org/10.1002/adom.202401638
  10. W.-L. Huang, C.-H. Li, S.-P. Chang, and S.-J. Chang, ECS J. Solid State Sci. Technol., 8, No. 7: Q3213 (2019); https://doi.org/10.1149/2.0371907jss
  11. Kiyotaka Wasa, Makoto Kitabatake, and Hideaki Adachi, Thin Film Materials Technology: Sputtering of Compound Materials (New York: Springer–William Andrew Inc. Publishing: 2004).
  12. O. M. Bordun, I. O. Bordun and I. Yo. Kukharskyy, J. Appl. Spectrosc., 78, No. 6: 922 (2012); https://doi.org/10.1007/s10812-012-9555-9
  13. R. Swanepoel, J. Phys. E: Sci. Instrum., 16, No. 12: 1214 (1983); https://doi.org/10.1088/0022-3735/16/12/023
  14. M. Abdel-Baki, F. A. Abdel Wahab, and F. El-Diasty, Mater. Chem. Phys., 96, Nos. 2–3: 201 (2006); https://doi.org/10.1016/j.matchemphys.2005.07.022
  15. S. H. Wemple and M. Di Domenico, Phys. Rev. B, 3: 1338 (1971); https://doi.org/10.1103/PhysRevB.3.1338
  16. O. M. Bordun, I. Yo. Kukharskyy, B. O. Bordun, and V. B. Lushchanets, J. Appl. Spectrosc., 81, No. 5: 771 (2014); https://doi.org/10.1007/s10812-014-0004-9
  17. O. M. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 83, No. 1: 141 (2016); https://doi.org/10.1007/s10812-016-0257-6
  18. M. Nonaka, T. Tanizaki, S. Matsushima, M. Mizuno, and C.-N. Xu, Chem. Lett., 30, No. 6: 664 (2001); https://doi.org/10.1246/cl.2001.664
  19. S. K. Sampath and J. F. Cordaro, J. Am. Ceram. Soc., 81, No. 3: 649 (1998); https://doi.org/10.1111/j.1151-2916.1998.tb02385.x
  20. K. Ikarashi, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, and Y. Inoue, J. Phys. Chem. B, 106, No. 35: 9048 (2002); https://doi.org/10.1021/jp020539e
  21. Suresh K. Sampath, D. G. Kanhere, and Ravindra Pandey, J. Phys.: Condens. Matter, 11: 3635 (1999); https://doi.org/10.1088/0953-8984/11/18/301
  22. David R. Penn, Phys. Rev., 128: 2093 (1962); https://doi.org/10.1103/PhysRev.128.2093
Creative Commons License
This article is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine.

E-mail: tatar@imp.kiev.ua Editorial Board Phones and Address About Collection User Agreement