Download the full
version of the article (in PDF format)
Laith M. AL TAAN and Nawfal Y. JAMIL
Raman Spectroscopy-Based Studying the Physical Differences of Graphene Layers Prepared by Direct Exfoliation
69–78 (2025)
PACS numbers: 61.48.Gh, 63.22.Rc, 68.37.Ps, 68.65.Pq, 78.30.Na, 78.67.Wj, 81.05.ue
This study explores the physical characteristics of graphene layers through the application of Raman spectroscopy and atomic force microscopy. Graphene samples are meticulously prepared by exfoliating natural graphite onto 300-nm SiO2/Si wafers. The analysis conducted at the Wolfson Nanomaterials and Devices Laboratory at Plymouth University in the UK focuses on examining the positions and intensities of the G and 2D bands in Raman spectroscopy, as well as scrutinizing atomic force microscope images. The investigation is aimed to assess various physical parameters, including the number of layers, quality, purity, domain size, and full width at half maximum (FHWM) of each graphene sample, providing valuable insights into their structural properties. This study suggests that the graphene layers on a SiO2/Si substrate prepared by direct exfoliating are suited for mechanical and electronic applications
KEY WORDS: graphene, graphite, Raman spectroscopy, exfoliation
DOI: https://doi.org/10.15407/nnn.23.01.0069
REFERENCES
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, Iss. 5696: 666 (2004); https://doi.org/10.1126/science.1102896
- A. K. Geim, Science, 324, No. 5934: 1530 (2009); https://doi.org/10.1126/science.1158877
- Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, Nano Letterers, 8, No. 3: 902 (2008); https://doi.org/10.1021/nl0731872
- H. S. Dong and S. J. Qi, Biosurface and Biotribology, 1, Iss. 4: 229 (2015); https://doi.org/10.1016/j.bsbt.2015.10.004
- Sungjin Park and Rodney S. Ruoff, Nature Nanotechnology, 4: 217 (2009); https://doi.org/10.1038/nnano.2009.58
- C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, Angewandte Chemie International Edition, 48: 7752 (2009); https://doi.org/10.1002/anie.200901678
- Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone, Science, 321, Iss. 5887: 385 (2008); https://doi.org/10.1126/science.1157996
- R. Nair, P. Blake, A. Grigorenko, K. Novoselov, and T. Booth, Science, 320: Iss. 5881: 1308 (2008); https://doi.org/10.1126/science.1156965
- Matthew J. Allen, Vincent C. Tung, and Richard B. Kaner, Chem. Rev., 110: 132 (2010); https://doi.org/10.1021/cr900070d
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306: 666 (2004); https://doi.org/10.1126/science.1102896
- K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Nat'l Acad. Sci. USA, 102, No. 30: 10451 (2005); https://doi.org/10.1073/pnas.0502848102
- Mehwish Abro, Modelling the Exfoliation of Graphite for Production of Graphene: MSc. Thesis (Sweden: Uppsala University, Institutionen för teknikvetenskaper, Department of Engineering Sciences: 2015); https://uu.diva-portal.org/smash/get/diva2:893757/FULLTEXT02.pdf
- Genhua Pan, Bing Li, Mark Heath, David Horsell, M. Lesley Wears, Laith Al Taan, and Shakil Awan, Carbon, 65: 349 (2013); https://doi.org/10.1016/j.carbon.2013.08.036
- A. C. Ferrari and J. Robertson, Phys. Rev. B, 61: 14095 (2000); https://doi.org/10.1103/PhysRevB.61.14095
- Joe Hodkiewicz, Thermo Fisher Scientific (Madison, Wisconsin, USA: 2022).
- Teng Cui, Sankha Mukherjee, Changhong Cao, Parambath M. Sudeep, Jason Tam, Pulickel M. Ajayan, Chandra Veer Singh, Yu Sun, and Tobin Filleter, Carbon, 136: 168 (2018); https://doi.org/10.1016/j.carbon.2018.04.074
- Duhee Yoon and Hyeonsik Cheong, Raman Spectroscopy for Characterization of Graphene. in Raman Spectroscopy for Nanomaterials Characterization (Ed. Challa S. S. R. Kumar) (Berlin–Heidelberg: Springer: 2012), p. 191–214; https://doi.org/10.1007/978-3-642-20620-7
- A. Casiraghi, E. Hartchuh, H. Lidorikis, H. Qian, T. Harutyunyan, K. Gokus, K. S. Novoselov, and A. C. Ferrari, Nano Lett., 7, No. 9: 2711 (2007); https://doi.org/10.1021/nl071168m
- F. Tuinstra and L. Koenig, Chem. Phys., 53: 1126 (1970); https://doi.org/10.1063/1.1674108
- Rohit Narula and Stephanie Reich, Phys. Rev. B, 78: 165422 (2008); https://doi.org/10.1103/PhysRevB.78.165422
- Pedro Venezuela, Michele Lazzeri, and Francesco Mauri, Phys. Rev. B, 84: 035433 (2011); https://doi.org/10.1103/PhysRevB.84.035433
- Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, Nano Lett., 7, No. 9: 2758 (2007); https://doi.org/10.1021/nl071254m
- Nicola Ferralis, Roya Maboudian, and Carlo Carraro, Phys. Rev. Lett., 101: 156801 (2008); https://doi.org/10.1103/PhysRevLett.101.156801
- Zhongwu Wang, V. Pischedda, S. K. Saxena, and Peter Lazor, Solid State Comm., 121, Iss. 5: 275 (2002); https://doi.org/10.1016/S0038-1098(01)00509-9
- Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun, Sukanta De, Ignatius T. McGovern, Brendan Holland, Michele Byrne, Yurii K. Gun'Ko, John J. Boland, Peter Niraj, Georg Duesberg, Satheesh Krishnamurthy, Robbie Goodhue, John Hutchison, Vittorio Scardaci, Andrea C. Ferrari, and Jonathan N. Coleman, Nature Nanotechnology, 3, No. 9: 563 (2008); https://doi.org/10.1038/nnano.2008.215
|