Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 1

 



Download the full version of the article (in PDF format)

Laith M. AL TAAN and Nawfal Y. JAMIL

Raman Spectroscopy-Based Studying the Physical Differences of Graphene Layers Prepared by Direct Exfoliation

69–78 (2025)

PACS numbers: 61.48.Gh, 63.22.Rc, 68.37.Ps, 68.65.Pq, 78.30.Na, 78.67.Wj, 81.05.ue

This study explores the physical characteristics of graphene layers through the application of Raman spectroscopy and atomic force microscopy. Graphene samples are meticulously prepared by exfoliating natural graphite onto 300-nm SiO2/Si wafers. The analysis conducted at the Wolfson Nanomaterials and Devices Laboratory at Plymouth University in the UK focuses on examining the positions and intensities of the G and 2D bands in Raman spectroscopy, as well as scrutinizing atomic force microscope images. The investigation is aimed to assess various physical parameters, including the number of layers, quality, purity, domain size, and full width at half maximum (FHWM) of each graphene sample, providing valuable insights into their structural properties. This study suggests that the graphene layers on a SiO2/Si substrate prepared by direct exfoliating are suited for mechanical and electronic applications

KEY WORDS: graphene, graphite, Raman spectroscopy, exfoliation

DOI:  https://doi.org/10.15407/nnn.23.01.0069

REFERENCES
  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, Iss. 5696: 666 (2004); https://doi.org/10.1126/science.1102896
  2. A. K. Geim, Science, 324, No. 5934: 1530 (2009); https://doi.org/10.1126/science.1158877
  3. Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, Nano Letterers, 8, No. 3: 902 (2008); https://doi.org/10.1021/nl0731872
  4. H. S. Dong and S. J. Qi, Biosurface and Biotribology, 1, Iss. 4: 229 (2015); https://doi.org/10.1016/j.bsbt.2015.10.004
  5. Sungjin Park and Rodney S. Ruoff, Nature Nanotechnology, 4: 217 (2009); https://doi.org/10.1038/nnano.2009.58
  6. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, Angewandte Chemie International Edition, 48: 7752 (2009); https://doi.org/10.1002/anie.200901678
  7. Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone, Science, 321, Iss. 5887: 385 (2008); https://doi.org/10.1126/science.1157996
  8. R. Nair, P. Blake, A. Grigorenko, K. Novoselov, and T. Booth, Science, 320: Iss. 5881: 1308 (2008); https://doi.org/10.1126/science.1156965
  9. Matthew J. Allen, Vincent C. Tung, and Richard B. Kaner, Chem. Rev., 110: 132 (2010); https://doi.org/10.1021/cr900070d
  10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306: 666 (2004); https://doi.org/10.1126/science.1102896
  11. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Nat'l Acad. Sci. USA, 102, No. 30: 10451 (2005); https://doi.org/10.1073/pnas.0502848102
  12. Mehwish Abro, Modelling the Exfoliation of Graphite for Production of Graphene: MSc. Thesis (Sweden: Uppsala University, Institutionen för teknikvetenskaper, Department of Engineering Sciences: 2015); https://uu.diva-portal.org/smash/get/diva2:893757/FULLTEXT02.pdf
  13. Genhua Pan, Bing Li, Mark Heath, David Horsell, M. Lesley Wears, Laith Al Taan, and Shakil Awan, Carbon, 65: 349 (2013); https://doi.org/10.1016/j.carbon.2013.08.036
  14. A. C. Ferrari and J. Robertson, Phys. Rev. B, 61: 14095 (2000); https://doi.org/10.1103/PhysRevB.61.14095
  15. Joe Hodkiewicz, Thermo Fisher Scientific (Madison, Wisconsin, USA: 2022).
  16. Teng Cui, Sankha Mukherjee, Changhong Cao, Parambath M. Sudeep, Jason Tam, Pulickel M. Ajayan, Chandra Veer Singh, Yu Sun, and Tobin Filleter, Carbon, 136: 168 (2018); https://doi.org/10.1016/j.carbon.2018.04.074
  17. Duhee Yoon and Hyeonsik Cheong, Raman Spectroscopy for Characterization of Graphene. in Raman Spectroscopy for Nanomaterials Characterization (Ed. Challa S. S. R. Kumar) (Berlin–Heidelberg: Springer: 2012), p. 191–214; https://doi.org/10.1007/978-3-642-20620-7
  18. A. Casiraghi, E. Hartchuh, H. Lidorikis, H. Qian, T. Harutyunyan, K. Gokus, K. S. Novoselov, and A. C. Ferrari, Nano Lett., 7, No. 9: 2711 (2007); https://doi.org/10.1021/nl071168m
  19. F. Tuinstra and L. Koenig, Chem. Phys., 53: 1126 (1970); https://doi.org/10.1063/1.1674108
  20. Rohit Narula and Stephanie Reich, Phys. Rev. B, 78: 165422 (2008); https://doi.org/10.1103/PhysRevB.78.165422
  21. Pedro Venezuela, Michele Lazzeri, and Francesco Mauri, Phys. Rev. B, 84: 035433 (2011); https://doi.org/10.1103/PhysRevB.84.035433
  22. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, Nano Lett., 7, No. 9: 2758 (2007); https://doi.org/10.1021/nl071254m
  23. Nicola Ferralis, Roya Maboudian, and Carlo Carraro, Phys. Rev. Lett., 101: 156801 (2008); https://doi.org/10.1103/PhysRevLett.101.156801
  24. Zhongwu Wang, V. Pischedda, S. K. Saxena, and Peter Lazor, Solid State Comm., 121, Iss. 5: 275 (2002); https://doi.org/10.1016/S0038-1098(01)00509-9
  25. Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun, Sukanta De, Ignatius T. McGovern, Brendan Holland, Michele Byrne, Yurii K. Gun'Ko, John J. Boland, Peter Niraj, Georg Duesberg, Satheesh Krishnamurthy, Robbie Goodhue, John Hutchison, Vittorio Scardaci, Andrea C. Ferrari, and Jonathan N. Coleman, Nature Nanotechnology, 3, No. 9: 563 (2008); https://doi.org/10.1038/nnano.2008.215
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement