Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 1

 



Download the full version of the article (in PDF format)

F.M. BUKHANKO

Low-Temperature Excitation of 2D Majorana Fermion Pairs in SmMnO3+δ Manganites Controlled by an External Magnetic Field

13–26 (2025)

PACS numbers: 71.10.-w, 75.30.Et, 75.30.Kz, 75.47.Gk, 75.47.Lx

In this work, we investigate the evolution of the low-energy spinon-pairs’ excitation in the first Landau zone in frustrated SmMnO3+δ manganites caused by changes in the strength H of the measuring field. An alternation of double peaks and Dirac cone of features of the ‘supermagnetization’ M(T), which are characteristic of two types of excitations of Majorana fermions in hidden topological states CSL1 and CSL2 of chiral quantum spin liquid, are revealed. The strong ‘smearing’ of features of the magnetization M(T) in SmMnO3+δ revealed in this work is explained by an increase in quantum fluctuations of the sample magnetization caused by the proximity to the quantum critical point of the magnetic phase diagram of the La1−ySmyMnO3+δ system.

KEY WORDS: quantum spin liquid, Majorana zero modes, Dirac semimetal, chiral spin liquid, frustrated manganites.

DOI:  https://doi.org/10.15407/nnn.23.01.0013

REFERENCES
  1. S. Huang, arXiv:2111.06703v2 [cond-mat.str-el] (16 Nov 2021).
  2. A. Kitaev, Physics-Uspekhi, 44, Iss. 10S: 131 (2001); https://doi.org/10.1070/1063-7869/44/10S/S29
  3. S. D. Sarma, M. Freedman, and C. Nayak, Quantum Information, 1: 15001 (2015); https://doi.org/10.1038/npjqi.2015.1
  4. K. Laubscher and J. Klinovaja, arXiv:2104.14459v2 [cond-mat.mes-hall] (13 Aug 2021).
  5. G. Moore and N. Read, Nucl. Phys. B, 360, Iss. 2–3: 362 (1991); https://doi.org/10.1016/0550-3213(91)90407-O
  6. G. E. Volovik, JETP Lett., 70, Iss. 11: 609 (1999); https://doi.org/10.1134/1.568223
  7. N. Read and D. Green, Phys. Rev. B, 61, Iss. 15: 10267 (2000); https://doi.org/10.1103/PhysRevB.61.10267
  8. T. Senthil and M. P. A. Fisher, Phys. Rev. B, 61, Iss. 14: 9690 (2000); https://doi.org/10.1103/PhysRevB.61.9690
  9. D. A. Ivanov, Phys. Rev. Lett., 86, Iss. 2: 268 (2001); https://doi.org/10.1103/PhysRevLett.86.268
  10. G. E. Volovik, JETP Lett., 90, Iss. 11: 398 (2009); https://doi.org/10.1134/S0021364009170172
  11. A. Y. Kitaev, Ann. Phys., 303, Iss. 1: 2 (2003); https://doi.org/10.1016/S0003-4916(02)00018-0
  12. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Rev. Mod. Phys., 80, Iss. 3: 1083 (2008); https://doi.org/10.1103/RevModPhys.80.1083
  13. S. D. Sarma, M. Freedman, and C. Nayak, arXiv:1501.02813v2 [cond-mat.str-el] (14 May 2015).
  14. M. Sato and Y. Ando, Rep. Prog. Phys., 80: 076501 (2017), https://doi.org/10.1088/1361-6633/aa6ac7
  15. J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, Phys. Rev. Lett., 112, Iss. 20: 207203-1 (2014); https://doi.org/10.1103/PhysRevLett.112.207203
  16. J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, Phys. Rev. B, 92, Iss. 11: 115127 (2015); https://doi.org/10.1103/PhysRevB.92.115127
  17. J. Knolle and R. Moessner, Annu. Rev. Condens. Matter Phys, 10: 451 (2019); https://doi.org/10.1146/annurev-conmatphys-031218-013401
  18. M. Leijnse and K. Flensberg, Semicond. Sci. Technol., 27, Iss. 12: 124003 (2012); https://doi.org/10.1088/0268-1242/27/12/124003
  19. J. Wang, S. Deng, Z. Liu, and Z. Liu, Natl. Sci. Rev., 2, Iss. 1: 22 (2015); https://doi.org/10.1093/nsr/nwu080
  20. L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, arXiv:1111.5020v2 [cond-mat.quant-gas] (25 Jun 2013).
  21. Z. Li, Z. Liu, and Z. Liu, Nano Research, 10, Iss. 6: 2005 (2017); https://doi.org/10.1007/s12274-016-1388-z
  22. G. Montambaux, L.-K. Lim, J.-N. Fuchs, and F. Piéchon, Phys. Rev. Lett., 121, Iss. 25: 256402-1 (2018); https://doi.org/10.1103/PhysRevLett.121.256402
  23. G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig, arXiv:0907.0500v1 [cond-mat.mes-hall] (2 Jul 2009).
  24. J. Peng, P. J. Chen, Y. Duan, and Y. Peng, AIP Advances, 5: 037132-1 (2015).
  25. D. V. Efremov and D. I. Khomskii, Phys. Rev. B, 72, Iss. 1: 012402 (2005); https://doi.org/10.1103/PhysRevB.72.012402
  26. F. N. Bukhanko and A. F. Bukhanko, Fizika Tverdogo Tela, 57, Iss. 6: 1098 (2015).
  27. F. N. Bukhanko and A. F. Bukhanko, Fizika Tverdogo Tela, 61, Iss. 12: 2493 (2019); https://doi.org/10.21883/FTT.2019.12.48543.512
  28. B. Zocher, C. Timm, and P. M. R. Brydon, Phys. Rev. B, 84, Iss. 14: 144425 (2011); https://doi.org/10.1103/PhysRevB.84.144425
  29. B. A. Volkov and Y. V. Kopaev, JETP Lett., 19: 104 (1973).
  30. B. A. Volkov, Y. V. Kopaev, and A. I. Rusinov, Sov. Phys. JETP, 41: 952 (1975).
  31. B. A. Volkov, A. I. Rusinov, and R. K. Timerov, Sov. Phys. JETP, 43: 589 (1976).
  32. J. Kunês, J. Phys.: Condens. Matter, 27, Iss. 33: 333201 (2015); https://doi.org/10.1088/0953-8984/27/33/333201
  33. B. I. Halperin and T. M. Rice, Solid State Physics, 21: 115 (1968).
  34. B. I. Halperin and T. M. Rice, Rev. Mod. Phys., 40, Iss. 4: 755 (1968); https://doi.org/10.1103/RevModPhys.40.755
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement