
13 

 

PACS numbers: 71.10.-w, 75.30.Et, 75.30.Kz, 75.47.Gk, 75.47.Lx 

Low-Temperature Excitation of 2D Majorana Fermion Pairs in 

SmMnO3+δ Manganites Controlled by an External Magnetic Field 

F. M. Bukhanko 

O. O. Galkin Donetsk Institute for Physics and Engineering, N.A.S. of Ukraine,  
46, Nauky Ave.,  
UA-03028 Kyiv, Ukraine 

In this work, we investigate the evolution of the low-energy spinon-pairs’ 
excitation in the first Landau zone in frustrated SmMnO3 manganites 
caused by changes in the strength H of the measuring field. An alterna-
tion of double peaks and Dirac cone of features of the ‘supermagnetiza-
tion’ M(T), which are characteristic of two types of excitations of Ma-
jorana fermions in hidden topological states CSL1 and CSL2 of chiral 
quantum spin liquid, are revealed. The strong ‘smearing’ of features of 
the magnetization M(T) in SmMnO3 revealed in this work is explained by 
an increase in quantum fluctuations of the sample magnetization caused 
by the proximity to the quantum critical point of the magnetic phase dia-
gram of the La1ySmyMnO3 system. 

В даній роботі досліджено еволюцію збудження низькоенергетичних 
спінонних пар у першій зоні Ландау у фрустрованих манганітах 
SmMnO3, спричинену змінами напружености H вимірювального поля. 
Виявлено чергування подвійних піків і Діраків конус особливостей 
«надмагнетованости» M(T), характерних для двох типів збуджень Ма-
йоранових ферміонів у прихованих топологічних станах CSL1 і CSL2 
хіральної квантової спінової рідини. Виявлене в даній роботі сильне 
«розмивання» особливостей намагнетованости M(T) у SmMnO3 пояс-
нюється збільшенням квантових флюктуацій намагнетованости зразка 
через близькість до квантової критичної точки магнетної фазової діяг-
рами системи La1ySmyMnO3. 
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1. INTRODUCTION 

According to Ref. [1], a Majorana fermion (MF) is a particle that is 
its own antiparticle. In the language of second quantization, this 
means that †, i.e., the fermionic operator  squares to 1. The 
creation and annihilation operators can be written as a superposi-
tion of two Majorana operators, a†1/√2(1i2), a√2(1i2). As 
such, they also fulfil the commutation identity {i, j}2ij. The task 
at hand is to physically separate the two Majorana modes, 2j and 
2j1, that make up a single fermionic mode, such that phase errors 
corresponding to a†

jaj(1i2j12j)/2 are unlikely to occur. Put to-
gether, these properties would make the Majorana qubit immune to 
decoherence. These Majorana’s fermions can arise as quasi-particles 
in superconducting systems, which have been investigated in [1] in 
a one-dimensional chain first proposed by Kitaev [2]. Shown that, 
they are bound to zero energy, making them Majorana zero modes—
a more apt name given that they no longer obey fermionic statis-
tics—where [H, i]0, with H being the Hamiltonian of the system 
(more realistically, this condition is relaxed to [H, i]e−

x/ [3], 
where x is the distance between the Majorana zero modes (MZMs) 
and  is the correlation length of the Hamiltonian). They obey non-
abelian statistics that enable the implementation of braid opera-
tions. This solves the final piece of the puzzle, where qubit opera-
tions are now intrinsically fault-tolerant due to their topological 
properties. 
 The so-called Majorana bound states arising on point defects have 
attracted great interest [4–13]. They can be interpreted as own an-
tiparticles in the sense that, in the language of second quantization, 
the operator of creation and annihilation of bound states are equal 
to each other. This means that Majorana bound states carry both 
zero spin and zero charge. Majorana bound states arise exactly at 
zero energy and are separated from other ordinary quasi-particle 
excitations by a finite energy gap. For this reason, Majorana bound 
states are also often referred to as Majorana zero modes (MZMs). It 
has been shown that MZMs in a 2D material obey quantum ex-
change statistics, which are neither fermionic nor bosonic [5–7]. 
MZMs are supposed to be an example of so-called non-Abelian ani-
ons. This means that the replacement of two MZMs implements a 
non-trivial rotation of the degenerate subspace of the ground state, 
while subsequent rotations do not necessarily commute. This prop-
erty makes non-Abelian anions such as MZMs promising potential 
building blocks for topological quantum computers, where logic 
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gates would then be performed by exchanging anyons [11, 12]. 
 According to Ref. [14], in systems with a condensed state, when 
a quasi-particle is a superposition of electron and hole excitations 
and its production operator † becomes identical to the annihilation 
operator , such a particle can be identified as a Majorana fermion. 
In the Reed–Green model, the Bogolyubov quasi-particles in the 
volume become dispersive Majorana fermions, and the bound state 
formed in the core of the vortex becomes the Majorana zero mode. 
The former is interesting as a new type of wandering quasi-
particles, while the latter is useful as a qubit for topological quan-
tum computing. In condensed matter, the constituent fermions are 
electrons. Because the electron has a negative charge, it cannot be a 
Majorana fermion. Nevertheless, Majorana fermions can exist as 
collective excitations of electrons. The resulting Majorana fermions 
do not retain the true Lorentz invariance of the Dirac equation, 
since they do not move at the speed of light. However, with proper 
length and time scaling, the resulting Majorana fermions also obey 
the Dirac equation. Such Majorana fermions appear within the 
boundaries of topological superconductors or in the class of spin-
liquid systems. The condensation of bosons in the form of a bound 
state of Majorana fermions was previously studied in topological 
superconductors by tunnelling spectroscopy. The tunnelling conduc-
tivity spectra of topological superconductors depend on their size 
and symmetry. In one-dimensional topological superconductors with 
time reversal violation, there is an isolated single Majorana zero 
mode at each end. 
 In this work, a study of the evolution of unusual spiky double—
peaks and Dirac cone-like features of the low temperature depend-
ences of ‘supermagnetization’ M(T) in SmMnO3 samples with in-
creasing external magnetic field strength H is carried out. These 
features, according to numerous literature data, are direct evidence 
of the excitation of 2D Majorana and Dirac fermions in quasi-two-
dimensional spin systems. 

2. MATERIAL AND METHODS 

Samples of self-doped manganites SmMnO3 ( 0.1) were obtained 
from high-purity oxides of samarium and electrolytic manganese, 
taken in a stoichiometric ratio. The synthesized powder was pressed 
under pressure 10 kbar into discs 6 mm in diameter, 1.2 mm thick 
and sintered in air at a temperature of 1170C for 20 h followed by 
cooling at a rate of 70C/h. The resulting tablets were a single-
phase ceramic according to x-ray data. X-ray studies were carried 
out with 300 K on DRON-1.5 diffractometer in radiation NiK12. 
Symmetry and crystal lattice parameters were determined by the 
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position and character splitting reflections of the pseudo-cubic lat-
tice perovskite type. Temperature dependences of dc magnetization 
were measured using a VSM EGG (Princeton Applied Research) vi-
brating magnetometer and a nonindustrial magnetometer in FC 
mode. 

3. EXPERIMENTAL RESULTS 

As can be seen in Fig. 1, the temperature dependence of the ‘su-
permagnetization’ М(Т) in the first Landau zone of SmMnO3 in 
the magnetic field 100 Oe has the shape of two weak spiky peaks 
near the average temperature T  4.65 K. According to Refs [15–
17], these spiky features in the magnetic response arise from excit-
ed states containing either only static magnetic fluxes and no mo-
bile fermions or from excited states, in which fermions are closely 
coupled to fluxes. The structural factor is significantly different in 
the Abelian and non-Abelian QSLs. Coupled fermion-flow composites 
appear only in the non-Abelian phase. The main feature of the dy-
namical structure factor at the isotropic point of the non-Abelian 
phase is the presence of a pointed -component caused by Majorana 
fermions coupled to flow pairs and a broad hump-like component 
caused by fermion continuum excitation. 
 According to Figure 2, in external magnetic field |Н| 350 Oe dis-

 

Fig. 1. The thermal excitation of spiky features in the magnetic response 
M(T) in the Landau band with n 1 arise from excited states containing 
either only static magnetic fluxes and no mobile fermions, or from excited 
states in which fermions are closely coupled to fluxes in the external mag-
netic field |H| 100 Oe (CSL1 state). 
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tinct magnetic response appears in the first Landau band in the 
shape of a Dirac cone-like truncated hill with a flat top near the av-
erage temperature ТMZM  4.6 K, which corresponds to the excitation 
of two coupled Majorana zero modes arising on spatially separated 
point defects [4–13], In a broad sense, two MF together give a Dirac 
fermion [18]. Thus, founded Dirac cones features of the ‘supermag-
netization’ М(Т) in the first Landau zone are direct evidence of the 
excitation of Dirac fermions in SmMnO3. An alternate permutation 
of the spiky double—peaks and Dirac cones features of the magneti-
zation M(T) in SmMnO3 may be explained by the existence in this 
material of two hidden states of the chiral spin liquid [1]. A further 
increase in the external magnetic field strength to the value 
|Н1 kOe led to the formation in the Landau zone with n1 dou-
ble-peaks’ feature in the magnetic response (Fig. 3). In external 
magnetic field |Н|3.5 kOe, only the step-like quantum oscillations 
of temperature dependences of ‘supermagnetization’ of incompress-
ible quantum spinon liquid were found (Fig. 4). 

4. DISCUSSION 

According to Ref. [18], the condensed matter version of MFs has 
attracted theoretical interest, mainly because of their special ex-
change statistics. They are non-Abelian anyons, meaning that parti-
cle exchanges are non-trivial operations, which, in general, do not 

 

Fig. 2. The thermal excitation of two coupled Majorana zero modes in the 
Landau band with n1 with energy EMZM  0.35 meV in the shape of a 
truncated hill (2D Dirac cone) with a flat top near the average temperature 
ТMZM4.6 K in external magnetic field |H|350 Oe (CSL2 state). 
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commute. 
 This is unlike other known particle types, where an exchange op-

 

Fig. 3. The thermal excitation of double-peaks feature in the magnetic re-
sponse M(T) in the Landau band with n1 arise from excited states con-
taining either only static magnetic fluxes and no mobile fermions, or from 
excited states, in which fermions are closely coupled to fluxes in external 
magnetic field |H|1 kOe (CSL1 state). 

 

Fig. 4. Ultra-narrow step-like features of the magnetization M(T) in the 
SmMnO3 in a strong magnetic field |H3.5 kOe in the Landau bands 
with n1 and 2. With growth of the field up to |H|3.5 kOe, there is a 
transition from a continuous spectrum of thermal excitations of spinon 
pairs to a discrete one corresponding to an integer filling of three Landau 
bands with finite gap. 
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eration merely has the effect of multiplying the wave function with 
1 (for bosons) or 1 (for fermions) or a general phase factor  (for 
‘ordinary’ (Abelian) anyons). 
 Furthermore, an MF is in a sense half of a normal fermion, 
meaning that a fermionic state is obtained as a superposition of two 
MFs. In a broad sense, two marjorams together give a Dirac fermi-
on. It should be noted, however, that any fermion could be written 
as a combination of two MFs, which basically corresponds to split-
ting the fermion into a real and an imaginary part, each of which is 
an MF. Normally, this is a purely mathematical operation without 
physical consequences, since the two MFs are spatially localized 
close to each other; overlap is significant and cannot be addressed 
individually. When we talk about MFs here, we mean that a fermi-
onic state can be written as a superposition of two MFs, which are 
spatially separated. Such a highly delocalized fermionic state is pro-
tected from most types of decoherence, since it cannot be changed 
by local perturbations affecting only one of its Majorana constitu-
ents. The state can, however, be manipulated by physical exchange 
of MFs because of their non-Abelian statistics, which has led to the 
idea of low-decoherence topological quantum computation. Being its 
own hole means that an MF must be an equal superposition of an 
electron and a hole state. It is natural to search for such excitations 
in superconducting systems, where the wave functions of Bogolyu-
bov quasi-particles have both an electron and a hole component. 
 To provide explanation for the rarity of 2D Dirac materials as 
well as clues in searching for new Dirac systems, authors [19] re-
view the recent theoretical aspects of various 2D Dirac materials, 
including graphene, silicene (silicone), germanene, graphynes, sev-
eral boron and carbon sheets, transition metal oxides and artificial 
lattices (electron gases and ultracold atoms). As shown, the Dirac 
cones are rather robust under perturbation. For example, when a 
uniaxial or shear strain is applied, the band structure of graphene 
keeps gapless and the Dirac point moves to a new k location near 
the original one. At present, Dirac cone merging is achieved only in 
artificial honeycomb lattices where parameters are much more ad-
justable. By patterning CO molecules on clean Cu(111), the hexago-
nal potential lattice of electron gases was effectively modulated to 
demonstrate a transition from massless to massive Dirac fermions 
in the system. In an ultracold gas of 40 K atoms trapped in a 2D 
honeycomb optical potential lattice, the merging and annihilation of 
two Dirac points were clearly recorded, when the lattice anisotropy 
exceeds a critical limit. A simplified analysis on a general 2D sys-
tem, which contains two atoms of the same species in each unit cell, 
demonstrated that a hexagonal cell is the most favourable for the 
existence of Dirac cones, and the favourableness is gradually dimin-
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ished, when the cell evolves into a square one. According to Ref. 
[19], to achieve Dirac materials, at least, three conditions are re-
quired. 
 (1) Symmetry. Specific symmetries are required to reduce the 
number of equations to be solved. The k-points should be unchanged 
after the symmetry operation (invariant k-point). Too low or too 
high symmetries are both disadvantageous. 
 (2) Parameters. Even when the number of equations is equal to 
the number of variables, the solution is not necessarily exist, since 
the variables (kx and ky) are real numbers and appear in the equa-
tions in the form of a sine or cosine function. Therefore, proper pa-
rameters are required. This is usually described as a phase diagram 
in the parameter space. 
 (3) Fermi level and band overlap. The Fermi level should lie at 
the Dirac points and there should not have any other band than Di-
rac points overlap at the Fermi level. 
 In Ref. [20], an ultracold Fermi gas of 40 K atoms in a two-
dimensional tuneable optical lattice was investigated, which can be 
continuously adjusted to create square, triangular, dimer and hon-
eycomb structures. It was exploited the momentum resolution of the 
interband transitions to directly observe the movement of the Dirac 
points. Starting from a honeycomb lattice, the authors gradually 
increase the tunnelling along the x direction by decreasing the in-
tensity of the x-beam. The position of the Dirac points continuously 
approaches the corners of the Brillouin zone, as expected from an 
ab initio two-dimensional band structure calculation. When reach-
ing the corners, the two Dirac points merge, annihilating each oth-
er. There, the dispersion relation becomes quadratic along the qy 
axis, remaining linear along qx. Beyond this critical point, a finite 
band gap appears for all quasi-momenta of the Brillouin zone. This 
situation signals the transition between band structures of two dif-
ferent topologies, one containing two Dirac points and the other 
none. In Ref. [21], it was shown that the introduction of lattice ani-
sotropy causes Dirac cones to shift in response to the applied strain, 
leaving a pseudo-gap at the original Dirac points. Here, a group-
theory analysis is combined with first-principles calculations to re-
veal the movement characteristics of Dirac points and band gaps in 
various graphynes under rotating uniaxial and shear strains. Gra-
phene, where linear effects dominate, is different from -, -, and 
-graphynes, which generate strong nonlinear responses due to their 
bendable acetylenic linkages. However, the linear components of the 
electronic response, which are essential in determining material 
performance such as intrinsic carrier mobility due to electron–
phonon coupling, can be readily separated, and are well described by 
a unified theory. The movement of the Dirac points in -graphyne 
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is circular under a rotating strain, and the pseudo-gap opening is 
isotropic with a magnitude of only 2% that in graphene. According 
to Ref. [22], there has been a recent growing interest for various 
physical systems exhibiting a multiband excitation spectrum with 
crossing points between the bands. This interest was boosted by the 
discovery of graphene, where the low energy spectrum is described 
by a 2D Dirac equation for massless fermions, giving the name ‘Di-
rac point’ to such linear crossing point. In two dimensions, a band 
touching is a topological defect protected by time-reversal and in-
version symmetries. Such a contact point is characterized by a 
winding number w, which describes the winding of the phase of the 
wave function when moving around this point in reciprocal space. 
Such singularities may emerge or disappear under variation of ex-
ternal parameters under the constraint that the sum of their wind-
ing numbers is conserved. 
 In Ref. [23], authors propose a simple Hamiltonian Heff to de-
scribe the motion and the merging of Dirac points in the electronic 
spectrum of two-dimensional electrons. This merging is a topologi-
cal transition, which separates a semi-metallic phase with two Dirac 
cones from an insulating phase with a gap. They calculated the den-
sity of states and the specific heat. The spectrum in a magnetic 
field B is related to the resolution of a Schrödinger equation in a 
double well potential. The effective Hamiltonian Heff has the re-
markable property to describe continuously the Landau level spec-
trum from the n√n|B| dependence with double degeneracy for 
well-separated Dirac cones to the n (n1/2)|B| usual dependence 
for a massive particle. For negative parameter /|B|2/3, the prob-
lem is similar to the one of a particle in a double well potential. In 
the limit of large negative  that is far from the transition or in a 
weak magnetic field, the potential has two well-separated valleys, 
which are almost uncoupled. This corresponds to the situation of 
two independent valleys. Note that in this limit the energy shift be-
tween the two valleys is 2√. When  diminishes, we progressively 
increase the coupling between valleys. The degeneracy of Landau 
levels is progressively lifted. They evolve continuously from a √n|B| 
to a linear (n1/2)|B| dependence, with a 

2/3
[( 1/ 2) ]n  B  depend-

ence at the transition. The spectrum in the vicinity of the topologi-
cal transition is very well described by a semi-classical quantization 
rule. This model describes continuously the coupling between val-
leys associated with the two Dirac points, when approaching the 
transition. It remarkably reproduces the low field part of the Ram-
mal Hofstadter’s spectrum for the honeycomb lattice. 
 In Ref. [24], analysis of the electronic properties of a deformed 
honeycomb structure arrayed by semiconductor quantum dots (QDs) 
is conducted theoretically by using tight-binding method. Through 
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the compressive or tensile deformation of the honeycomb lattice, 
the variation of energy spectrum has been explored. It was shown 
that, the massless Dirac fermions are generated in this adjustable 
system and the positions of the Dirac cones as well as slope of the 
linear dispersions could be manipulated. Furthermore, a clear linear 
correspondence between the distance of movement d (the distance 
from the Dirac points to the Brillouin zone corners) and the tunea-
ble bond angle  of the lattice are found in this artificial planar QD 
structure. These results provide the theoretical basis for manipulat-
ing Dirac fermions and should be very helpful for the fabrication 
and application of high-mobility semiconductor QD devices. 
 The fact that doped manganites can have the properties of a 2D 
semimetal has long been known, but relatively little theoretical and 
experimental work has been done in this interesting area of solid-
state physics. The possibility of the existence of a state similar to 
an exciton dielectric in doped La1xCaxMnO3 manganites was first 
pointed out in Ref. [25] within the framework of a two-band model 
of double exchange of charge carriers in the eg shell of manganese 
ions without taking into account the electron–phonon interaction. It 
was shown that nesting of electron and hole regions (pockets) of the 
Fermi surface, corresponding to two eg bands of charge carriers, ex-
ists in the initial LaMnO3 compound. Because of the nesting of 
these bands in LaMnO3, charge carriers are unstable to the for-
mation of a gas of electron–hole pairs of the exciton dielectric type. 
A small dielectric gap appears in the spectrum of quasi-particles, 
and the system becomes an insulator. The anomalies in the tempera-
ture dependences of the ac-dielectric permittivity found in the 
La1ySmyMnO3 system were explained in Ref. [26] in terms of the 
existing concepts of the Bose–Einstein condensation of an electron–
hole liquid in the form of metal drops in an exciton dielectric. In 
our later work [27], when explaining the effect of external influ-
ences on the magnetism of fluctuating low-dimensional electron and 
spin correlations in frustrated manganites La1ySmyMnO3 (y0.85, 
1.0), we considered several weak coupling models of the appearance 
of CDW/SDW states and superconductivity, based on the possibility 
of the existence in some materials of an unusual state—an exciton 
condensate (EC), in which, according to the literature data, new 
types of charge/spin density and superconductivity waves can arise 
under the influence of weak external influences, which are closely 
related to various types of nesting of electron–hole regions of the 
Fermi surface and interband (intraband) pairing of charge and spin 
carriers. 
 In Ref. [28], a two-band model for the formation of an exciton 
SDW was constructed taking into account the interband and intra-
band interactions of charge carriers. The case of complete nesting 
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of electron–hole regions of the Fermi surface is considered for sev-
eral different values of the wave vector Qi. It was shown that the 
change in the shape of the Fermi surface, caused by the relative 
shift of the conduction and valence bands, leads to competition be-
tween different magnetic phases. Within the framework of this 
model, the static magnetic susceptibility of the electron–hole sys-
tem was studied, which made it possible to determine the nature of 
its various instabilities of the exciton SDW type. It is shown that 
instabilities in the paramagnetic state of a system of EC spins can 
be strictly identified by studying the peak features of the tempera-
ture dependence (T) of their static magnetic susceptibility. When, 
with a decrease in the temperature of the paramagnetic state of the 
electron–hole system, it reaches a critical value, then, one can ex-
pect the appearance of peaks (T) of various shapes caused by the 
appearance of SDWs with wave vectors equal to different values of 
the nesting vector Qi of the electron–hole Fermi surface regions. It 
was found that in the case of exciton (interband) instability, the 
feature of the paramagnetic susceptibility caused by nesting of the 
phase transition has the form of a sharp peak, while the intraband 
instability is characterized by a peak feature spread over a wide 
range of wave vector values near Qi. Of particular interest is the 
appearance of signs of anomalous ferromagnetism in self-doped 
La0.15Sm0.85MnO3 manganites at temperatures below TFM12 K in 
magnetic fields |H350 Oe, which we discovered in Ref.[27], ap-
parently associated with the EC ferromagnetism. EC ferromag-
netism was first studied theoretically in Refs. [29–31]. A model was 
considered for the spectrum of fermions (S1/2), which are unsta-
ble to electron–hole pairing in the weak coupling limit. Conditions 
are found under which singlet (S0) and triplet (S1) types of 
spin pairing can coexist, which leads to an unusual state of a fermi-
on gas of the exciton ferromagnet type. The authors considered 
three types of fermion gas: 1) semimetals with overlapping phase 
transitions, 2) semiconductors with a narrow band gap less than the 
exciton binding energy, 3) metals with very narrow bands. In all 
three cases, the system is unstable to coherent electron–hole pairing 
of free charge carriers into a singlet state with a binding energy VC 
or a triplet state with a binding energy VT, or to the formation of 
two states that differ in q vectors. 
 The energy spectrum of such systems has a semiconductor char-
acter with a dielectric gap С for singlet pairing and T for triplet 
pairing. It was shown that the transition of a gas of free charge 
carriers in such materials to a ferromagnetic ground state is possi-
ble even in the case of a weak interaction between charge carriers. 
It has been established that the simultaneous existence of singlet 
(S) and triplet (T) order parameters is accompanied by the for-
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mation of CDWs and SDWs, as well as the removal of spin degener-
acy of the electron and hole bands. In this case, if the number of 
electrons is not equal to the number of holes, the number of charge 
carriers with opposite spin is different. The total spin of such a sys-
tem is proportional to the difference in the electron and hole con-
centrations, which is the reason for the appearance of exciton fer-
romagnetism at T0 K. In a later review [32], it was noted that 
the weak coupling approximation, in which there is no Hund strong 
coupling, describes weakly correlated metals well or semiconduc-
tors, in which the gluing of electron–hole pairs is carried out by the 
long-range part of the interaction. This leads to the coexistence of 
many degenerate exciton states in these materials. Due to this de-
generacy, even such a weak exchange interaction as hopping of elec-
tron–hole pairs between atoms can play an important role in the 
formation of exciton ferromagnetism and CDW/SDW of ordered 
states of fermions [33, 34]. According to Ref. [33], a charge density 
wave with singlet spin pairing (S0) and a spin density wave with 
triplet spin pairing (S1) can coexist in ECs. In weak coupling 
models, it is assumed that the main cause of the EC instability is 
the complete nesting of the electron–hole regions of the Fermi sur-
face. In our opinion, the models of exciton condensate considered 
above in the simplest case of the weak coupling limit are directly 
related to the experimental results obtained in this work and can be 
used as a foundation in our further study of the unusual properties 
of frustrated manganites of the La1ySmyMnO3 type. The unusual 
properties of frustrated manganites include the previously discov-
ered coexistence in them at temperatures below 60 K of spin, elec-
tron–hole, and superconducting quantum liquids. 

4. CONCLUSION 

Аn alternate permutation of the double—peaks and Dirac cone fea-
tures of the ‘supermagnetization’ M(T) in SmMnO3+δ during the 
Landau quantization of the spinon pairs spectrum by the weak ex-
ternal magnetic fields |H|100, 350, 1000 Oe may be explained by 
the existence in this material of two hidden states of the chiral spin 
liquid CSL1 and CSL2. The double-peaks features in SmMnO3 arise 
from excited states of the chiral QSL containing from excited states 
in which Majorana fermions are closely coupled to fluxes. In exter-
nal magnetic field |H|350 Oe magnetic response appears in the 
first Landau zone in the shape of a Dirac cone feature near the av-
erage temperature ТMZM  4.6 K, which corresponds to the excitation 
of two coupled Majorana zero modes arising on point defects. In ex-
ternal magnetic field |H|3.5 kOe, only the step-like quantum oscil-
lations of temperature dependences of ‘supermagnetization’ of in-
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compressible quantum spinon liquid were found. The strong ‘smear-
ing’ of the features of the magnetization M(T) in SmMnO3 found 
in this work is explained by an increase in quantum fluctuations of 
the sample magnetization caused by the proximity to the quantum 
critical point of the magnetic phase diagram of the La1ySmyMnO3 
system. 
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