Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

P.M. KUZNIETSOV, O.V. YAROSCHUK, O.O. BIEDUNKOVA, and A.M. PRYSHCHEPA

Behaviour of Dispersed Particles in Water Treatment During Lime Softening and Acid Stabilisation Treatment
1039–1052 (2024)

PACS numbers: 61.43.Gt, 68.37.Og, 68.43.Hn, 81.05.Rm, 82.70.Kj, 83.80.Hj

Nanotechnology is a section of science and technology regarding the modification and use of particles in the atomic and molecular order. In this aspect, a particle is considered a tiny thing that acts as a single piece with respect to its carriage and specifications. The study of the formation of suspended particles in treated water during liming and corrective treatment with sulfuric acid (H2SO4) and 1-hydroxy ethylidene-1,1-diphosphonic (HEDP) is carried out, the change in the components of treated water is shown, the particle-sizes’ distribution is determined, and microscopic images of suspended particles in treated water are obtained. The purpose of the study is to determine the processes of formation of chemical composition, changes in size and structure of particles formed during lime softening and corrective antiscale treatment of cooling water, the results of which can be used to optimize water-treatment technology in order to reduce the flow of suspended solids into cooling systems. As shown, in the process of water treatment, the composition of suspended solids changes from mixed to calcium carbonate, particles are enlarged, and their content increases compared to the input water that requires the use of additional treatment methods, in particular, filtering of treated water. Lime softening provides water purification for the main components, which form scale: a decrease in the concentration of bicarbonate and carbonate ions is up to 70%, of calcium ions is up to 60%, compared to the input water, and an increase in their concentration is observed for total suspended solids (TSS). Changes in both the chemical content and the particle-sizes’ distribution of suspended solids indicate the formation of new particles, which are crucial in the formation of the TSS content in treated water during lime softening. Taking into account the results of determining the TSS concentration and their particle-sizes’ distribution (PSD), a filter material with pores of 20 µm is selected, which allows separating up to 70% of particles and reducing the TSS content during water treatment

KEY WORDS: particle-sizes’ distribution, lime softening, chemical composition, suspended particles

DOI:  https://doi.org/10.15407/nnn.22.04.1039

REFERENCES
  1. Z. Lu, D. Mishra, K. Zhang, B. Perdicakis, D. Pernitsky, and Q. Lu, Wat. Res., 200: 117202 (2021); https://doi.org/10.1016/j.watres.2021.117202
  2. Ì. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, and Z. Issaabadi, Interface Science and Technology, 28: 1 (2019); https://doi.org/10.1016/B978-0-12-813586-0.00001-8
  3. A. Celen, A. ?ebi, M. Aktas, O. Mahian, A. S. Dalkilic, and S. Wongwises, International Journal of Refrigeration, 44: 125 (2014); https://doi.org/10.1016/j.ijrefrig.2014.05.009
  4. X. Ba, J. Chen, X. Wang, Hao Xu, J. Sun, Y. Qi, Y. Li, J. Wang, and B. Jiang, Desalination, 553: 116481 (2023); https://doi.org/10.1016/j.desal.2023.116481
  5. J. Li, Z. T. How, C. Benally, Y. Sun, H. Zeng, and M. G. El-Din, Sep. and Pur. Tech., 313: 123484 (2023); https://doi.org/10.1016/j.seppur.2023.123484
  6. A. Vahedi and B. Gorczyca, Wat. Res., 45, Iss. 2: 545 (2011); https://doi.org/10.1016/j.watres.2010.09.014
  7. D. J. Venegas-Garcia and L. D. Wilson, Materials, 16: 655 (2023); https://doi.org/10.3390/ma16020655
  8. P. N. Kuznietsov, O. O. Biedunkova, and O. V. Yaroshchuk, Prob. At. Sc. and Tech., 2: 144 (2023); https://doi.org/10.46813/2023-144-069
  9. B. Elduayen-Echave, M. Azcona, P. Grau, and P. A. Schneider, Journal of Water Process Engineering, 38: 101657 (2020); https://doi.org/10.1016/j.jwpe.2020.101657
  10. P. M. Kuznietsov and O. O. Biedunkova, Journal of Engineering Sciences, 10: 2 (2023); https://doi.org/10.21272/jes.2023.10(2).h1
  11. A. P. Mathews, Journal of Environmental Management, 293: 112888 (2021); https://doi.org/10.1016/j.jenvman.2021.112888
  12. T. Yadai and Y. Suzuki, Clean Water, 6: 7 (2023); https://doi.org/10.1038/s41545-023-00226-0
  13. R. Angelico, A. Ceglie, J.-Z. He, Y.-R. Liu, G. Palumbo, and C. Colombo, Chemosphere, 99: 239 (2014); https://doi.org/10.1016/j.chemosphere.2013.10.092
  14. ². Labban, C. Liu, T. H. Chong, and J. H. Lienhard, J. Mem. Sc., 521: 18 (2017); https://doi.org/10.1016/j.memsci.2016.08.062
  15. M. Suthar and P. Aggarwal, J. R. Mech. and Geot. Eng., 10, Iss. 4: 769 (2018); https://doi.org/10.1016/j.jrmge.2017.12.008
  16. M. Scholz, Water Softening. Wetlands for Water Pollution Control. 2nd Edition (Elsevier: 2016), Ch. 17, p. 111–114; https://doi.org/10.1016/B978-0-444-63607-2.00017-4
  17. Ð. Kuznietsov and Î. Biedunkova, Nucl. and Rad. Saf., 1: 97 (2023); https://doi.org/10.32918/nrs.2023.1(97).04
  18. Ð. Kuznietsov, À. Tykhomyrov, Î. Biedunkova, and S. Zaitsev, Scientific Horizons, 12: 25 (2022); https://doi.org/10.48077/scihor.25(12).2022.69-79
  19. Z. Ma, L.-F. Ren, D. Ying, J. Jia, and J. Shao, Chemosphere, 310: 136929 (2023); https://doi.org/10.1016/j.chemosphere.2022.136929
  20. A. Waza, K. Schneiders, J. Heuser, and K. Kandler, Atmosphere, 14: 700 (2023); https://doi.org/10.3390/atmos14040700
  21. H. Bagheri, H. Hashemipour, and S. Ghader, Comp. Part. Mech., 6: 721 (2019); https://doi.org/10.1007/s40571-019-00257-w
  22. L. Bergwerff and L. A. Paassen, Crystals, 11: 1318 (2021); https://doi.org/10.3390/cryst11111318
  23. J. Adusei-Gyamfi, B. Ouddane, L. Rietveld, J.-P. Cornard, and J. Criquet, Wat. Res., 160: 130 (2019); https://doi.org/10.1016/j.watres.2019.05.064
  24. J. A. Nason and D. F. Lawler, Wat. Res., 43, Iss. 2: 303 (2009); https://doi.org/10.1016/j.watres.2008.10.017
  25. B. Coto, C. Martos, J. L. Pena, R. Rodriguez, and G. Pastor, Fluid Phase Equilibria, 324: 1 (2012); https://doi.org/10.1016/j.fluid.2012.03.020
  26. S. Feng, M. Yao, S. Guo, J. Lin, Z. Ao, C. Yu, K. Li, C. Xun, L. Yang, and J. He, Ch. Eng. Sc., 262: 118053 (2022); https://doi.org/10.1016/j.ces.2022.118053
  27. A. E. Nielsen, Journal of Crystal Growth, 2: 289 (1984); https://doi.org/10.1016/0022-0248(84)90189-1
  28. V. Lahoussine-Turcaud, M. R. Wiesner, and J. Bottero, Journal of Membrane Science, 52, No. 2: 173 (1990); https://doi.org/10.1016/S0376-7388(00)80484-6
  29. M. F. Hochella, Earth and Planetary Science Letters, 203, No. 2: 593 (2002); https://doi.org/10.1016/S0012-821X(02)00818-X
  30. Vuk Uskokovi?, Nanotechnologies: Technology in Society, 29, No. 1: 43 (2007); https://doi.org/10.1016/j.techsoc.2006.10.005
  31. H. Komiyama, Y. Yamaguchi, and S. Noda, Chemical Engineering Science, 59, Nos. 22–23: 5085 (2004); https://doi.org/10.1016/j.ces.2004.09.025
  32. C. L. Freeman and J. H. Harding, Journal of Crystal Growth, 603, No. 2: 126978 (2023); https://doi.org/10.1016/j.jcrysgro.2022.126978
  33. D. Gebauer, M. Kellermeier, and J. D. Gale, Chemical Society Reviews, 43, No. 7: 2348 (2014); https://doi.org/10.1039/C3CS60451A
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement