Download the full
version of the article (in PDF format)
P.M. KUZNIETSOV, O.V. YAROSCHUK, O.O. BIEDUNKOVA, and
A.M. PRYSHCHEPA
Behaviour of Dispersed Particles in Water
Treatment During Lime Softening and Acid Stabilisation Treatment
1039–1052 (2024)
PACS numbers: 61.43.Gt, 68.37.Og, 68.43.Hn, 81.05.Rm, 82.70.Kj, 83.80.Hj
Nanotechnology is a section of science and technology regarding the modification and use
of particles in the atomic and molecular order. In this aspect, a particle is considered a tiny thing that
acts as a single piece with respect to its carriage and specifications. The study of the formation of
suspended particles in treated water during liming and corrective treatment with sulfuric acid (H2SO4) and
1-hydroxy ethylidene-1,1-diphosphonic (HEDP) is carried out, the change in the components of treated water
is shown, the particle-sizes’ distribution is determined, and microscopic images of suspended particles in
treated water are obtained. The purpose of the study is to determine the processes of formation of chemical
composition, changes in size and structure of particles formed during lime softening and corrective
antiscale treatment of cooling water, the results of which can be used to optimize water-treatment
technology in order to reduce the flow of suspended solids into cooling systems. As shown, in the process of
water treatment, the composition of suspended solids changes from mixed to calcium carbonate, particles are
enlarged, and their content increases compared to the input water that requires the use of additional
treatment methods, in particular, filtering of treated water. Lime softening provides water purification for
the main components, which form scale: a decrease in the concentration of bicarbonate and carbonate ions is
up to 70%, of calcium ions is up to 60%, compared to the input water, and an increase in their concentration
is observed for total suspended solids (TSS). Changes in both the chemical content and the particle-sizes’
distribution of suspended solids indicate the formation of new particles, which are crucial in the formation
of the TSS content in treated water during lime softening. Taking into account the results of determining
the TSS concentration and their particle-sizes’ distribution (PSD), a filter material with pores of 20 µm is
selected, which allows separating up to 70% of particles and reducing the TSS content during water treatment
KEY WORDS: particle-sizes’ distribution, lime softening, chemical composition, suspended particles
DOI: https://doi.org/10.15407/nnn.22.04.1039
REFERENCES
- Z. Lu, D. Mishra, K. Zhang, B. Perdicakis, D. Pernitsky, and Q. Lu, Wat. Res., 200: 117202 (2021); https://doi.org/10.1016/j.watres.2021.117202
- Ì. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, and Z. Issaabadi, Interface Science and Technology, 28: 1 (2019); https://doi.org/10.1016/B978-0-12-813586-0.00001-8
- A. Celen, A. ?ebi, M. Aktas, O. Mahian, A. S. Dalkilic, and S. Wongwises, International Journal of Refrigeration, 44: 125 (2014); https://doi.org/10.1016/j.ijrefrig.2014.05.009
- X. Ba, J. Chen, X. Wang, Hao Xu, J. Sun, Y. Qi, Y. Li, J. Wang, and B. Jiang, Desalination, 553: 116481 (2023); https://doi.org/10.1016/j.desal.2023.116481
- J. Li, Z. T. How, C. Benally, Y. Sun, H. Zeng, and M. G. El-Din, Sep. and Pur. Tech., 313: 123484 (2023); https://doi.org/10.1016/j.seppur.2023.123484
- A. Vahedi and B. Gorczyca, Wat. Res., 45, Iss. 2: 545 (2011); https://doi.org/10.1016/j.watres.2010.09.014
- D. J. Venegas-Garcia and L. D. Wilson, Materials, 16: 655 (2023); https://doi.org/10.3390/ma16020655
- P. N. Kuznietsov, O. O. Biedunkova, and O. V. Yaroshchuk, Prob. At. Sc. and Tech., 2: 144 (2023); https://doi.org/10.46813/2023-144-069
- B. Elduayen-Echave, M. Azcona, P. Grau, and P. A. Schneider, Journal of Water Process Engineering, 38: 101657 (2020); https://doi.org/10.1016/j.jwpe.2020.101657
- P. M. Kuznietsov and O. O. Biedunkova, Journal of Engineering Sciences, 10: 2 (2023); https://doi.org/10.21272/jes.2023.10(2).h1
- A. P. Mathews, Journal of Environmental Management, 293: 112888 (2021); https://doi.org/10.1016/j.jenvman.2021.112888
- T. Yadai and Y. Suzuki, Clean Water, 6: 7 (2023); https://doi.org/10.1038/s41545-023-00226-0
- R. Angelico, A. Ceglie, J.-Z. He, Y.-R. Liu, G. Palumbo, and C. Colombo, Chemosphere, 99: 239 (2014); https://doi.org/10.1016/j.chemosphere.2013.10.092
- ². Labban, C. Liu, T. H. Chong, and J. H. Lienhard, J. Mem. Sc., 521: 18 (2017); https://doi.org/10.1016/j.memsci.2016.08.062
- M. Suthar and P. Aggarwal, J. R. Mech. and Geot. Eng., 10, Iss. 4: 769 (2018); https://doi.org/10.1016/j.jrmge.2017.12.008
- M. Scholz, Water Softening. Wetlands for Water Pollution Control. 2nd Edition (Elsevier: 2016), Ch. 17, p. 111–114; https://doi.org/10.1016/B978-0-444-63607-2.00017-4
- Ð. Kuznietsov and Î. Biedunkova, Nucl. and Rad. Saf., 1: 97 (2023); https://doi.org/10.32918/nrs.2023.1(97).04
- Ð. Kuznietsov, À. Tykhomyrov, Î. Biedunkova, and S. Zaitsev, Scientific Horizons, 12: 25 (2022); https://doi.org/10.48077/scihor.25(12).2022.69-79
- Z. Ma, L.-F. Ren, D. Ying, J. Jia, and J. Shao, Chemosphere, 310: 136929 (2023); https://doi.org/10.1016/j.chemosphere.2022.136929
- A. Waza, K. Schneiders, J. Heuser, and K. Kandler, Atmosphere, 14: 700 (2023); https://doi.org/10.3390/atmos14040700
- H. Bagheri, H. Hashemipour, and S. Ghader, Comp. Part. Mech., 6: 721 (2019); https://doi.org/10.1007/s40571-019-00257-w
- L. Bergwerff and L. A. Paassen, Crystals, 11: 1318 (2021); https://doi.org/10.3390/cryst11111318
- J. Adusei-Gyamfi, B. Ouddane, L. Rietveld, J.-P. Cornard, and J. Criquet, Wat. Res., 160: 130 (2019); https://doi.org/10.1016/j.watres.2019.05.064
- J. A. Nason and D. F. Lawler, Wat. Res., 43, Iss. 2: 303 (2009); https://doi.org/10.1016/j.watres.2008.10.017
- B. Coto, C. Martos, J. L. Pena, R. Rodriguez, and G. Pastor, Fluid Phase Equilibria, 324: 1 (2012); https://doi.org/10.1016/j.fluid.2012.03.020
- S. Feng, M. Yao, S. Guo, J. Lin, Z. Ao, C. Yu, K. Li, C. Xun, L. Yang, and J. He, Ch. Eng. Sc., 262: 118053 (2022); https://doi.org/10.1016/j.ces.2022.118053
- A. E. Nielsen, Journal of Crystal Growth, 2: 289 (1984); https://doi.org/10.1016/0022-0248(84)90189-1
- V. Lahoussine-Turcaud, M. R. Wiesner, and J. Bottero, Journal of Membrane Science, 52, No. 2: 173 (1990); https://doi.org/10.1016/S0376-7388(00)80484-6
- M. F. Hochella, Earth and Planetary Science Letters, 203, No. 2: 593 (2002); https://doi.org/10.1016/S0012-821X(02)00818-X
- Vuk Uskokovi?, Nanotechnologies: Technology in Society, 29, No. 1: 43 (2007); https://doi.org/10.1016/j.techsoc.2006.10.005
- H. Komiyama, Y. Yamaguchi, and S. Noda, Chemical Engineering Science, 59, Nos. 22–23: 5085 (2004); https://doi.org/10.1016/j.ces.2004.09.025
- C. L. Freeman and J. H. Harding, Journal of Crystal Growth, 603, No. 2: 126978 (2023); https://doi.org/10.1016/j.jcrysgro.2022.126978
- D. Gebauer, M. Kellermeier, and J. D. Gale, Chemical Society Reviews, 43, No. 7: 2348 (2014); https://doi.org/10.1039/C3CS60451A
|